Boydflindt8667

Z Iurium Wiki

Verze z 31. 12. 2024, 14:28, kterou vytvořil Boydflindt8667 (diskuse | příspěvky) (Založena nová stránka s textem „Quadrupolar NMR relaxation rates were computed for aqueous 133Cs+, 131Xe, and 127I- via Kohn-Sham (KS) density functional theory-based ab initio molecular…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Quadrupolar NMR relaxation rates were computed for aqueous 133Cs+, 131Xe, and 127I- via Kohn-Sham (KS) density functional theory-based ab initio molecular dynamics and KS calculations of the electric field gradient (EFG) tensors along the trajectories. The resulting rates are within a factor of 1-3 of the experimental values and can be compared to available results from classical dynamics and EFGs from electrostatic models with corrections via Sternheimer antishielding factors. Relativistic effects are shown to have an enhancing effect on the magnitude of the EFGs. An analysis of the EFGs was carried out in terms of localized molecular orbitals to elucidate contributions from the solvent versus solute polarization and assess the validity of the Sternheimer approximation for these systems.Herein, we detail an approach to accelerate the computational screening of materials for properties dictated by the kinetics of solid-state diffusion through reliably and rapidly identifying upper and lower bounds to the transition state (TS) energy through our proposed modified single iteration synchronous-transit (MSIST) approach. read more While this sacrifices providing detailed information of the explicit TS structure, it requires only 30% of the force evaluations of a full nudged elastic band (NEB) TS search and reduces the computational demand to compute estimated diffusion barriers by ∼70% on average. In all 53 cases in which we explicitly compared our results to those of an NEB calculation, the upper and lower bounds identified using this approach bracketed the TS energy calculated with explicit NEB calculations. We use the applications of diffusion of Na+ in potential sodium-ion battery electrodes and oxygen vacancy diffusion in solid-oxide fuel cell electrodes and redox mediators for solar thermochemical hydted regression techniques. MSIST enables the analysis of the kinetics of solid-state diffusion across larger sets of materials and can thus efficiently provide data to train statistically learned models of diffusion and to develop physical insights into the diffusion process.The study of photoinduced dynamics in chemical systems necessitates accurate and computationally efficient electronic structure methods, especially as the systems of interest grow larger. The linear response hole-hole Tamm-Dancoff approximated (hh-TDA) density functional theory method was recently proposed to satisfy such demands. The N-electron electronic states are obtained by means of double annihilations on a doubly anionic (N + 2)-electron reference state, allowing for the ground and excited states to be formed on the same footing and thus enabling the correct description of conical intersections. Dynamic electron correlation effects are incorporated by means of the exchange-correlation functional. The accuracy afforded by the simultaneous treatment of static and dynamic correlation in addition to the relatively low computational cost, comparable to that of time-dependent density functional theory (TDDFT), makes it a promising ab initio electronic structure method for on-the-fly generation of potential ere. FOMO-hh-TDA-BHLYP faithfully reproduces the nonadiabatic dynamics of trans-azobenzene (TAB) and is used to characterize the excited state decay pathways from the first (nπ*) excited state.Full configuration interaction (FCI) solvers are limited to small basis sets due to their expensive computational costs. An optimal orbital selection for FCI (OptOrbFCI) is proposed to boost the power of existing FCI solvers to pursue the basis set limit under a computational budget. The optimization problem coincides with that of the complete active space SCF method (CASSCF), while OptOrbFCI is algorithmically quite different. OptOrbFCI effectively finds an optimal rotation matrix via solving a constrained optimization problem directly to compress the orbitals of large basis sets to one with a manageable size, conducts FCI calculations only on rotated orbital sets, and produces a variational ground-state energy and its wave function. Coupled with coordinate descent full configuration interaction (CDFCI), we demonstrate the efficiency and accuracy of the method on the carbon dimer and nitrogen dimer under basis sets up to cc-pV5Z. We also benchmark the binding curve of the nitrogen dimer under the cc-pVQZ basis set with 28 selected orbitals, which provide consistently lower ground-state energies than the FCI results under the cc-pVDZ basis set. The dissociation energy in this case is found to be of higher accuracy.Modern high-throughput structure-based drug discovery algorithms consider ligand flexibility, but typically with low accuracy, which results in a loss of performance in the derived models. Here we present the bioactive conformational ensemble (BCE) server and its associated database. The server creates conformational ensembles of drug-like ligands and stores them in the BCE database, where a variety of analyses are offered to the user. The workflow implemented in the BCE server combines enhanced sampling molecular dynamics with self-consistent reaction field quantum mechanics (SCRF/QM) calculations. The server automatizes all of the steps to transform one-dimensional (1D) or 2D representation of drugs into 3D molecules, which are then titrated, parametrized, hydrated, and optimized before being subjected to Hamiltonian replica-exchange (HREX) molecular dynamics simulations. Ensembles are collected and subjected to a clustering procedure to derive representative conformers, which are then analyzed at the SCRF/QM level of theory. All structural data are organized in a noSQL database accessible through a graphical interface and in a programmatic manner through a REST API. The server allows the user to define a private workspace and offers a deposition protocol as well as input files for "in house" calculations in those cases where confidentiality is a must. The database and the associated server are available at https//mmb.irbbarcelona.org/BCE.Hybrid quantum mechanical and molecular mechanical (QM/MM) approaches facilitate computational modeling of large biological and materials systems. Typically, in QM/MM, a small region of the system is modeled with an accurate quantum mechanical method and its surroundings with a more efficient alternative, such as a classical force field or the effective fragment potential (EFP). The reliability of QM/MM calculations depends largely on the treatment of interactions between the two subregions, also known as embedding. The polarizable embedding, which allows mutual polarization between solvent and solute, is considered to be essential for describing electronic excitations in polar solvents. In this work, we employ the QM/EFP model and extend the polarizable embedding by incorporating two short-range terms-a charge penetration correction to the electrostatic term and the exchange-repulsion term-both of which are modeled with one-electron contributions to the quantum Hamiltonian. We evaluate the accuracy of these terms by computing excitation energies across 37 molecular clusters consisting of biologically relevant chromophores surrounded by polar solvent molecules.

Autoři článku: Boydflindt8667 (Randrup Swanson)