Porterkrag2455
A human biomonitoring project investigating environmental exposures to metals from hair, blood and urine samples was implemented in the Northwest Territories, Canada, between January 2016 and March 2018. This study reports the metal biomarker levels from nine Dene communities located in the Dehcho and Sahtú regions to identify contaminants of interest. MEK activity Levels of metals in the urine (n = 198), blood (n = 276) and hair (n = 443) samples were generally similar to those seen in other biomonitoring studies in Canada, but lead levels in blood (GM = 16 μg/L; 95th percentile = 71 μg/L) and urine (GM = 0.59 μg/L, 0.69 μg/g of creatinine; 95th percentile = 4.2 μg/L, 4.0 μg/g of creatinine) were higher than those observed in the Canadian Health Measure Survey (CHMS, cycles 2 and 5). Hair mercury (but not blood mercury) appeared higher than observed in participants from the CHMS cycle 5. The vast majority of participants had biomarker levels below the biomonitoring guidance values established for mercury and lead. Based on a comparative analysis of biomarker statistics relative to a nationally-representative survey, metals and essential trace elements of particular interest for follow-up research include lead, manganese, mercury, and selenium. This project provided baseline biomarker levels in participating regions, which is essential to track changes in the future, and identify the contaminants to prioritize for further investigation of exposure determinants.Keban Dam Lake (KDL) is the second largest dam lake in Turkey. There have been some reports on the trace element (TE) levels in surface water of the KDL, but its deep water has been never studied. We measured 17 TEs (Pb, Hg, Cd, As, Cr, Ni, Co, Mn, Cu, Fe, Al, Sr, U, V, Zn, Zr and Ba) in surface and deep water samples and assessed their health risks for residential and recreational receptors. Copper, Zn, Ba, Ni, Mn and Pb levels in deep water were higher than those in surface water. Total TE level in deep water was higher in wet season, whereas that in surface water was higher in dry season. TE levels in both surface and deep water were much lower than the guideline values for drinking water and the protection of freshwater aquatic life, indicating that TEs in the KDL originate from natural sources. All HQ (hazard quotient) and HI (hazard index) values were below the risk threshold of unity. HI values for child were higher than those for adult, indicating that the health of children is at dramatically higher risk than adults. Arsenic and U for water ingestion were the primary contributors to total risk (HI), while V and Cr for dermal pathway. The presence of U and V, among the TEs which are major contributors to total health risk, reveals the necessity of monitoring of such less-studied elements in the surface water bodies. Carcinogenic risk values of As and Cr in surface and deep water were below the target risk of 1 × 10-4. These findings indicated that TEs in surface and deep water of the KDL do not pose health risks to residential and recreational users. Thus this study may serve as a model for similar studies assessing health risks of multi-elements in freshwater bodies in future.Cr(VI)-contaminated soils could be remediated by using calcium polysulfide (CPS), while natural iron oxides as a main composition of soil would influence the pathways of the remediation. Through kinetic batch tests, the kinetics of Cr(VI) removal from soil, the effects of the contents of natural iron oxides, soil environmental conditions and mechanisms of Cr(VI) removal by using CPS with the presence of natural iron oxides were investigated. The results show that the removal of Cr(VI) by using CPS in soil fitted the pseudo-second-order model best, and the appearance of goethite increased the apparent rate constant from 0.0002 kg mg-1 h-1 to 0.0005 kg mg-1 h-1. The presence of iron oxides enhanced the removal of Cr(VI) by using CPS, and an extended reductive atmosphere of soil was created. The enhancement of Cr(VI) removal increased with the contents of iron oxides from 0 to 9 g kg-1, and declined from 9 to 12 g kg-1. Acidic environment favored the removal of Cr(VI) from soil by using CPS with or without the iron oxides compared to neutral soil and increased it from 87% to 100% because of proton-consuming reactions and electrostatic attraction. Twenty-nine percent of exchangeable and bound-to-carbonates species of chromium declined after the remediation, while 24% bound-to-iron-and-manganese-oxide species increased simultaneously. The findings of the study indicate that natural iron oxides in soils catalyze the reduction of Cr(VI) in soil and facilitate significantly the remediation of Cr(VI)-contaminated soil by using CPS.As one of the most important energy resources in the world, coal contributes a great deal to the world economy. Coal mining and processing involve multiple dust generation processes including coal cutting, transport, crushing and milling etc. Coal dust is one of the main sources of health hazard for the coal workers. Exposure of coal dusts can be prevented through administrative controls and engineering controls. Ineffective control of coal dust exposure can harm coal workers' health. Although many efforts have been made to eliminate these threats, recent years have seen an unexpected increase in coal workers' pneumoconiosis (CWP) in Appalachian basin in US. To explore the reasons for this phenomenon, in this review, we first reviewed the historical studies on coal mine dust including the regulation and engineering controls. Then, the effects of coal dust on human health was comprehensively reviewed. Next, the effects of nanoparticles on human health were reviewed, with an emphasis on toxicity of nanoparticles such as carbon nanotubes in other industries. From all this information, we hypothesize that nano-sized coal dust has contributed to the increase of CWP prevalence in recent years. As no research has been reported in this area, four directions which may need further investigation and future studies are recommended in this review. They include 1) Systematic characterization of physicochemical properties of nano-size coal dust; 2) Toxicity and pathogenesis of nano-sized coal dust; 3) Development of real-time monitoring technology and equipment for nano-sized coal dust; 4) Development of exposure control technology and equipment. The intent of this review paper is to demonstrate the variation of coal dust properties and their impact on the mine worker's health. We suggest that the impact of nano-sized coal mine dust on miner's health has not yet been understood well and further improvements are necessary.