Zhouandrews7427

Z Iurium Wiki

Verze z 31. 12. 2024, 14:20, kterou vytvořil Zhouandrews7427 (diskuse | příspěvky) (Založena nová stránka s textem „013) and HGD/OAC (p = 0.002). Aberrant p53 expression correlated with risk of short-term progression within 12 months, with an odds ratio of 6.0 (95% CI 3.…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

013) and HGD/OAC (p = 0.002). Aberrant p53 expression correlated with risk of short-term progression within 12 months, with an odds ratio of 6.0 (95% CI 3.1-11.2). A panel comprising aneuploidy and p53 had an area under the receiving operator characteristics curve of 0.68 (95% CI 0.59-0.77) for prediction of any progression. Interpretation Aneuploidy is the only biomarker that predicts neoplastic progression of NDBO. Aberrant p53 expression suggests prevalent dysplasia, which might have been missed by random biopsies, and warrants early follow up.Semi-volatile organic compounds (SVOCs) are ubiquitous and toxic environmental pollutants, and have recently attracted much research attention. However, their occurrence in tapwater and the associated potential health risks have not been thoroughly studied. This work examined 26 household tapwater samples collected in 26 Chinese cities during August and September 2019. Concentrations of 79 SVOCs, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polychlorobenzenes (CBs), were determined using an emerging method of high throughput organic analysis testing combined with high volume solid phase extraction (Hi-throat/Hi-volume SPE). Total concentrations of PAHs, PCBs, OCPs, and CBs were in the ranges 8.70-103 ng L-1 (average 42.1 ng L-1), 61.6-434 pg L-1 (average 274 pg L-1), 13.1-266 pg L-1 (average 59.8 pg L-1), and 3.5-83.0 pg L-1 (average 13.8 pg L-1), respectively. PAHs were the dominant SVOCs, with concentrations 10-100 times those of PCBs, OCPs, and CBs. All the studied SVOCs had concentrations deemed acceptable by Chinese national tapwater standards. These measured SVOCs displayed little spatial variation across China, but were significantly correlated with the size of the economy and population of each city. The human non-carcinogenic and carcinogenic risks associated with the studied SVOCs in Chinese tapwater are negligible.This study assesses arsenic (As) fractionation in sediments and speciation in muscle tissues of Bagrid catfish, Chrysichthys nigrodigitatus from Lagos Lagoon, southwest Nigeria to determine risks to ecological receptors and humans. Residual As was the predominant geochemical fraction (86.2%) in sediments. Arsenite [As (III)] concentrations which ranged from 0.06 to 0.53 mg kg-1 in catfish muscle tissue, accounting for 25.9% of total As was the dominant species. Less toxic dimethylarsinic acid (DMA) which varied between 0.06 and 0.27 mg kg-1 made up to 10.8% of total As in catfish muscle tissue. Estimated human average daily intake (ADI) of As as As (III) and DMA were 1.35 × 10-4 and 0.62 × 10-4 mg kg-1 BW with corresponding hazard quotients (HQs) of 0.45 and 0.21, respectively, indicate no apparent health hazard to adult consumers. The incremental lifetime cancer risks (ILCR) of 0.78 × 10-3 for total As, 0.20 × 10-3 for As (III), and 0.93 × 10-3 for DMA, for adults from the consumption of catfish is slightly higher than the US EPA threshold and indicates moderate carcinogenic risk. Furthermore, 12.5% bioavailable fraction of As in sediment and relatively higher levels of As (III) in fish tissues has ecological and public health implications.Dye wastewater is harmful to the ecological environment because of its potential biological toxicity, teratogenicity, carcinogenicity, and mutagenicity. We fabricated a layered graphene oxide (GO) membrane through layer-by-layer (LBL) self-assembly. We used borate to crosslink with GO on a polyethyleneimine (PEI)-coated hydrolyzed polyacrylonitrile (hPAN) support. Fourier transform infrared (FTIR) spectrometry, Raman spectra, and x-ray photoelectron spectroscopy (XPS) confirmed the presence of a crosslinking reaction. The dynamic thermomechanical analysis (DMA) results indicated that the introduction of borate can significantly improve the mechanical properties of the membrane. The Young's modulus, ultimate tensile strength, and proportional limit of borate that was assembled twice as the outermost layer were increased by 110.81%, 62.37%, and 53.72%, respectively, as compared to those of a single-layered GO membrane. Moreover, the pure water fluxes of the layered GO membrane did not obviously decrease with an increase in the number of layers. The flux of the membrane with an outermost layer of borate was greater than that of the previous GO layer. Ulixertinib supplier The salt and dye rejection of the membranes was augmented with an increase in the number of layers. For the GO membrane assembled three times, rejection to methyl orange (MO), methylene blue (MB), NaCl, MgCl2, and MgSO4 reached 74.02%, 88.56%, 14.55%, 27.50%, and 41.95%, respectively. The use of borate as an inorganic crosslinker can avoid the environmental pollution caused by organic agents, and improve the mechanical properties as well as the filter capability of the layered GO membrane. Therefore, this study presents a novel method of membrane preparation for dye removal.Anaerobic digestion (AD) of lignocellulosic biomass is appealing because of the abundance and ease of obtaining the biomass locally. However, the recalcitrance of lignocellulosic biomass presents an obstacle in the hydrolysis step of AD and lowers the process efficiency. In this study, sunflower, which is a model lignocellulosic biomass, was pretreated by thermal (hydrothermal pretreatment, HTP) and non-thermal (milling) methods; the methane yield and biodegradability of the pretreated biomass were determined using a series of batch tests. The thermal pretreatment method showed a significantly higher methane yield (213.87-289.47 mL g-1 VS) and biodegradability (43-63%) than those of the non-thermally pretreated biomass, and the optimum pretreatment effect was observed at an HTP temperature of 180 °C. However, at an HTP temperature exceeding 200 °C, the induced formation of 5-hydroxymethylfurfural and furfural significantly lowered the methane yield and biodegradability. This study revealed that the HTP temperature is closely related to the formation of lignocellulosic biomass-degrading byproducts, which potentially hinder the methanogenesis step in AD; severe HTP conditions may have the opposite effect on the AD performance of lignocellulosic biomass.

Autoři článku: Zhouandrews7427 (Flindt Moss)