Jimenezschack3740

Z Iurium Wiki

Verze z 31. 12. 2024, 14:19, kterou vytvořil Jimenezschack3740 (diskuse | příspěvky) (Založena nová stránka s textem „We investigated means to improve the production of the indigenous Naked Neck chicken in Afghanistan. Specifically, we analyzed single nucleotide polymorphi…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

We investigated means to improve the production of the indigenous Naked Neck chicken in Afghanistan. Specifically, we analyzed single nucleotide polymorphisms (SNPs) in the prolactin (PRL) (24 bp indel), growth hormone (GH) (T185G), and pituitary specific transcript factor 1 (PIT-1) (intron 5) genes. Blood samples were collected from 52 birds and genomic DNA was extracted. Polymorphisms in the mentioned loci were analyzed by PCR, allele-specific PCR, and PCR-restriction fragment length polymorphism (RFLP) using TaqI and MspI endonucleases. Cloning followed by DNA sequencing was performed to ascertain the accuracy of the PCR-RFLP analysis for PIT-1.Two alleles were found for the PRL 24 bp indel, GH (T185G), and PIT-1/TaqI, with the following respective allelic frequencies PRL-In 0.64 and PRL-Del 0.36, GH-T 0.91 and GH-G 0.09, and PIT-1-A 0.64 and PIT-1-B 0.36. Regarding the PIT-1/MspI polymorphism, three novel MspI recognition sites, as well as two reported MspI recognition sites, were detected in intron 5. Moreover, during sequence screening, two novel SNPs were found that generated restriction sites for MseI. Therefore, our results suggest that the PRL indel, GH T185G, and PIT-1/TaqI polymorphisms may be used as selection markers for Afghanistan Naked Neck chickens. Intron 5 of PIT-1 in the Afghani Naked Neck chicken was highly polymorphic compared to the reported Gallus gallus PIT-1 gene (GenBank accession no. NC_006088.4). 2019, Japan Poultry Science Association.Responses of an individual to food deprivation, such as a 16-h fast, are complex, and are influenced by environmental and genetic factors. Domestication is an ongoing process during which adaptations to changing environments occur over generations. Food deprivation by their caretakers is less for domestic chickens than for their junglefowl ancestors. Unlike domestic chicken, the junglefowl adapted over generations to periods of food deprivation, which may be reflected in differences in metabolic responses to brief periods without food. GSK-2879552 supplier Here, we compared the blood glucose and plasma levels of non-esterified fatty acids (NEFA) among four populations when deprived of feed for 16 h. The four populations included a domestic White Rock experimental line (LWS) maintained for generations under ad libitum feeding, adult red junglefowl (RJF), and a reciprocal cross of the lines. Although there were significant differences in adult (31-week) body weight between the RJF (683 g) and LWS (1282 g), with the weight of F1 crosses being intermediate, the amount of abdominal fat relative to body weight was similar for all populations. Patterns for blood glucose responses to a glucose bolus after a 16-h fast were similar for the initial and final points in the parental and cross populations. However, RJF reached their peak faster than LWS, with the reciprocal cross intermediate to the parental populations. Plasma NEFA concentrations were higher after the 16-h fast than in fed states, with no population differences for the fasting state. However, in the fed state, NEFA levels were lesser for LWS than for others, which was reflected further in percentage change from fed to fasted. This larger change in LWS suggests differences in mobilization of energy substrates and implies that during domestication or development of the LWS line, thresholds for responses to acute stressors may have increased. 2019, Japan Poultry Science Association.A study was conducted to provide genetic information on the matrilineal phylogeny and genetic diversity of Red junglefowl (RJF) and native chickens in Samar Island, Philippines and to identify the genetic distance between Philippine junglefowls and other RJF species in Southeast Asia using complete mitochondrial DNA D-loop sequences. A total of 5 RJFs and 43 native chickens from Samar Island were included in this study. The results showed that Samar RJFs had a nucleotide diversity of 0.0050±0.0016, which was lower than those of three subspecies of Gallus gallus G. g. gallus, G. g. spadiceus, and G. g. jabouillei. Meanwhile, Samar native chickens showed lower nucleotide diversity (0.0056±0.0004) than domestic fowls in some neighboring Southeast Asian countries, but higher than those in African and European countries. Phylogenetic analysis showed that 3 haplotypes of Samar RJFs clustered to haplogroup D1, and that 2 haplotypes clustered to haplogroup D2. Chickens native to Samar Island showed 100% resemblance to those in the haplogroup shared by domestic chickens and RJFs. Haplogroups A and B and sub-haplogroups D1 and E1 were the more widely distributed matrilineal lineages in Samar Island. Phylogenetic analysis of Samar RJFs showed that they were closely related to Myanmar RJFs (99.6%), Indonesia RJFs (99.5%), and Thailand RJFs (99.1%). This study is an initial investigation estimating the matrilineal phylogeny and genetic diversity of chicken populations in Samar Island, Philippines for developing strategies aimed at the future conservation and improvement of valuable genetic resources. 2019, Japan Poultry Science Association.Descriptive sensory characteristics of eggs produced by conventional corn-based feeding and unhulled whole rice grain-feeding were compared in two cooking procedures using a trained panel. Rice-feeding significantly decreased brothy and roasted odor in eggs cooked into half-cooked egg yolks, and decreased the creamy odor, smoothness and moisture of eggs cooked into custard puddings. However, a statistical interaction between rice-feeding and production farm was not observed in every sensory attribute. These findings indicated that replacing corn with unhulled whole rice grain in diets for laying hens alters the sensory attributes of eggs. 2019, Japan Poultry Science Association.Skeletal muscle mass is an important trait in poultry meat production. In mammals, myostatin, a negative regulator of skeletal muscle growth, activates Smad transcription factors and induces the expression of atrogin-1 by regulating the Akt/FOXO pathway. Although the amino acid sequence of chicken myostatin is known to be completely identical to its mammalian counterpart, previous studies in chicken skeletal muscles have implied that the physiological roles of chicken myostatin are different from those of mammals. Furthermore, it remains to be elucidated whether myostatin affects cellular signaling factors and atrogin-1 expression. In this study, using chick embryonic myotubes, we found that myostatin significantly increased the phosphorylation rate of Smad2 and mRNA levels of atrogin-1. No significant change was observed in the phosphorylation of Akt and FOXO1. These in vitro results suggest that the molecular mechanisms underlying myostatin-induced expression of atrogin-1 might be different between chickens and mammals.

Autoři článku: Jimenezschack3740 (Pappas Turan)