Gyllingreese4097

Z Iurium Wiki

Verze z 31. 12. 2024, 14:07, kterou vytvořil Gyllingreese4097 (diskuse | příspěvky) (Založena nová stránka s textem „We present two frameworks for design optimization of a multi-chamber pneumatic-driven soft actuator to optimize its mechanical performance. The design goal…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

We present two frameworks for design optimization of a multi-chamber pneumatic-driven soft actuator to optimize its mechanical performance. The design goal is to achieve maximal horizontal motion of the top surface of the actuator with a minimum effect on its vertical motion. The parametric shape and layout of air chambers are optimized individually with the firefly algorithm and a deep reinforcement learning approach using both a model-based formulation and finite element analysis. The presented modeling approach extends the analytical formulations for tapered and thickened cantilever beams connected in a structure with virtual spring elements. selleck products The deep reinforcement learning-based approach is combined with both the model- and finite element-based environments to fully explore the design space and for comparison and cross-validation purposes. The two-chamber soft actuator was specifically designed to be integrated as a modular element into a soft robotic pad system used for pressure injury prevention, where local control of planar displacements can be advantageous to mitigate the risk of pressure injuries and blisters by minimizing shear forces at the skin-pad contact. A comparison of the results shows that designs achieved using the deep reinforcement based approach best decouples the horizontal and vertical motions, while producing the necessary displacement for the intended application. The results from optimizations were compared computationally and experimentally to the empirically obtained design in the existing literature to validate the optimized design and methodology.The COVID-19 pandemic has caused dramatic effects on the healthcare system, businesses, and education. In many countries, businesses were shut down, universities and schools had to cancel in-person classes, and many workers had to work remotely and socially distance in order to prevent the spread of the virus. These measures opened the door for technologies such as robotics and artificial intelligence to play an important role in minimizing the negative effects of such closures. There have been many efforts in the design and development of robotic systems for applications such as disinfection and eldercare. Healthcare education has seen a lot of potential in simulation robots, which offer valuable opportunities for remote learning during the pandemic. However, there are ethical considerations that need to be deliberated in the design and development of such systems. In this paper, we discuss the principles of roboethics and how these can be applied in the new era of COVID-19. We focus on identifying the most relevant ethical principles and apply them to a case study in dentistry education. DenTeach was developed as a portable device that uses sensors and computer simulation to make dental education more efficient. DenTeach makes remote instruction possible by allowing students to learn and practice dental procedures from home. We evaluate DenTeach on the principles of data, common good, and safety, and highlight the importance of roboethics in Canada. The principles identified in this paper can inform researchers and educational institutions considering implementing robots in their curriculum.Current neurorehabilitation models primarily rely on extended hospital stays and regular therapy sessions requiring close physical interactions between rehabilitation professionals and patients. The current COVID-19 pandemic has challenged this model, as strict physical distancing rules and a shift in the allocation of hospital resources resulted in many neurological patients not receiving essential therapy. Accordingly, a recent survey revealed that the majority of European healthcare professionals involved in stroke care are concerned that this lack of care will have a noticeable negative impact on functional outcomes. COVID-19 highlights an urgent need to rethink conventional neurorehabilitation and develop alternative approaches to provide high-quality therapy while minimizing hospital stays and visits. Technology-based solutions, such as, robotics bear high potential to enable such a paradigm shift. While robot-assisted therapy is already established in clinics, the future challenge is to enable physically assisted therapy and assessments in a minimally supervized and decentralized manner, ideally at the patient's home. Key enablers are new rehabilitation devices that are portable, scalable and equipped with clinical intelligence, remote monitoring and coaching capabilities. In this perspective article, we discuss clinical and technological requirements for the development and deployment of minimally supervized, robot-assisted neurorehabilitation technologies in patient's homes. We elaborate on key principles to ensure feasibility and acceptance, and on how artificial intelligence can be leveraged for embedding clinical knowledge for safe use and personalized therapy adaptation. Such new models are likely to impact neurorehabilitation beyond COVID-19, by providing broad access to sustained, high-quality and high-dose therapy maximizing long-term functional outcomes.In daily life, there are a variety of complex sound sources. It is important to effectively detect certain sounds in some situations. With the outbreak of COVID-19, it is necessary to distinguish the sound of coughing, to estimate suspected patients in the population. In this paper, we propose a method for cough recognition based on a Mel-spectrogram and a Convolutional Neural Network called the Cough Recognition Network (CRN), which can effectively distinguish cough sounds.[This corrects the article DOI 10.3389/fmolb.2020.610533.].Background The incidence of skin cutaneous melanoma (SKCM) has risen more rapidly than any other solid tumor in the past few decades. The median survival for metastatic melanoma is only six to nine months and the 5°years survival rate of patients with conventional therapy is less than 5%. Our aim was to reveal the potential molecular mechanism in m6A modification of lncRNA and provide candidate prognostic biomarkers for metastatic SKCM. Methods lncRNAs expression level was obtained by re-annotation in TCGA and CCLE datasets. m6A-related lncRNAs were selected though correlation analysis. Univariate cox regression analysis was used to screen out independent prognostic factors. LASSO Cox regression was performed to construct an m6A-related lncRNA model (m6A-LncM). Univariate survival analysis and ROC curve were used to assess the prognostic efficacy of this model and candidate lncRNAs. Enrichment analysis was used to explore the candidate genes' functions. Results We obtained 1,086 common m6A-related lncRNAs after Pearson correlation analysis in both two datasets.

Autoři článku: Gyllingreese4097 (Hejlesen Horne)