Guymorris1683

Z Iurium Wiki

Verze z 31. 12. 2024, 14:00, kterou vytvořil Guymorris1683 (diskuse | příspěvky) (Založena nová stránka s textem „These results suggest that when the brain models other minds, it uses a subthreshold motion signal, streaming from an individual to an object, to help repr…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

These results suggest that when the brain models other minds, it uses a subthreshold motion signal, streaming from an individual to an object, to help represent attentional state. This type of social-cognitive model, tapping perceptual mechanisms that evolved to process physical events in the real world, may help to explain the extraordinary cultural persistence of beliefs in mind processes having physical manifestation. These findings, therefore, may have larger implications for human psychology and cultural belief.Pericentromeric human satellite II (HSATII) repeats are normally silent but can be actively transcribed in tumor cells, where increased HSATII copy number is associated with a poor prognosis in colon cancer, and in human cytomegalovirus (HCMV)-infected fibroblasts, where the RNA facilitates viral replication. Here, we report that HCMV infection or treatment of ARPE-19 diploid epithelial cells with DNA-damaging agents, etoposide or zeocin, induces HSATII RNA expression, and a kinase-independent function of ATM is required for the induction. Additionally, various breast cancer cell lines growing in adherent, two-dimensional cell culture express HSATII RNA at different levels, and levels are markedly increased when cells are infected with HCMV or treated with zeocin. High levels of HSATII RNA expression correlate with enhanced migration of breast cancer cells, and knockdown of HSATII RNA reduces cell migration and the rate of cell proliferation. Our investigation links high expression of HSATII RNA to the DNA damage response, centered on a noncanonical function of ATM, and demonstrates a role for the satellite RNA in tumor cell proliferation and movement.Human sapoviruses (HuSaVs) cause acute gastroenteritis similar to human noroviruses. Although HuSaVs were discovered four decades ago, no HuSaV has been grown in vitro, which has significantly impeded the understanding of viral biology and the development of antiviral strategies. In this study, we identified two susceptible human cell lines, that originated from testis and duodenum, that support HuSaV replication and found that replication requires bile acids. HuSaVs replicated more efficiently in the duodenum cell line, and viral RNA levels increased up to ∼6 log10-fold. We also detected double-stranded RNA, viral nonstructural and structural proteins in the cell cultures, and intact HuSaV particles. We confirmed the infectivity of progeny viruses released into the cell culture supernatants by passaging. These results indicate the successful growth of HuSaVs in vitro. Additionally, we determined the minimum infectious dose and tested the sensitivities of HuSaV GI.1 and GII.3 to heat and ultraviolet treatments. This system is inexpensive, scalable, and reproducible in different laboratories, and can be used to investigate mechanisms of HuSaV replication and to evaluate antivirals and/or disinfection methods for HuSaVs.Proteostasis collapse, the diminished ability to maintain protein homeostasis, has been established as a hallmark of nematode aging. However, whether proteostasis collapse occurs in humans has remained unclear. Here, we demonstrate that proteostasis decline is intrinsic to human senescence. Using transcriptome-wide characterization of gene expression, splicing, and translation, we found a significant deterioration in the transcriptional activation of the heat shock response in stressed senescent cells. Fingolimod cell line Furthermore, phosphorylated HSF1 nuclear localization and distribution were impaired in senescence. Interestingly, alternative splicing regulation was also dampened. Surprisingly, we found a decoupling between different unfolded protein response (UPR) branches in stressed senescent cells. While young cells initiated UPR-related translational and transcriptional regulatory responses, senescent cells showed enhanced translational regulation and endoplasmic reticulum (ER) stress sensing; however, they were unable to trigger UPR-related transcriptional responses. This was accompanied by diminished ATF6 nuclear localization in stressed senescent cells. Finally, we found that proteasome function was impaired following heat stress in senescent cells, and did not recover upon return to normal temperature. Together, our data unraveled a deterioration in the ability to mount dynamic stress transcriptional programs upon human senescence with broad implications on proteostasis control and connected proteostasis decline to human aging.Obligate symbioses involving intracellular bacteria have transformed eukaryotic life, from providing aerobic respiration and photosynthesis to enabling colonization of previously inaccessible niches, such as feeding on xylem and phloem, and surviving in deep-sea hydrothermal vents. A major challenge in the study of obligate symbioses is to understand how they arise. Because the best studied obligate symbioses are ancient, it is especially challenging to identify early or intermediate stages. Here we report the discovery of a nascent obligate symbiosis in Howardula aoronymphium, a well-studied nematode parasite of Drosophila flies. We have found that Haoronymphium and its sister species harbor a maternally inherited intracellular bacterial symbiont. We never find the symbiont in nematode-free flies, and virtually all nematodes in the field and the laboratory are infected. Treating nematodes with antibiotics causes a severe reduction in fly infection success. The association is recent, as more distantly related insect-parasitic tylenchid nematodes do not host these endosymbionts. We also report that the Howardula nematode symbiont is a member of a widespread monophyletic group of invertebrate host-associated microbes that has independently given rise to at least four obligate symbioses, one in nematodes and three in insects, and that is sister to Pectobacterium, a lineage of plant pathogenic bacteria. Comparative genomic analysis of this group, which we name Candidatus Symbiopectobacterium, shows signatures of genome erosion characteristic of early stages of symbiosis, with the Howardula symbiont's genome containing over a thousand predicted pseudogenes, comprising a third of its genome.

Autoři článku: Guymorris1683 (Stewart Elmore)