Colemanmilne0612
05), thus supporting the hypothesis of random association of alleles. These findings are consistent with a pathogen that reproduces both clonally and sexually. Low and insignificant levels of population differentiation were detected, with 90% of the variation occurring among isolates within subpopulations. The high intrapopulation variation has implications in breeding for resistance to P. fijiensis because isolates differing in aggressiveness and virulence are likely to exist over small spatial scales. Diverse isolates will be required for resistance screening to ensure selection of banana cultivars with durable resistance to Sigatoka in East Africa.[Formula see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.Farmers rely heavily on the use of strobilurin fungicides to manage sheath blight (ShB) caused by Rhizoctonia solani AG1-IA, the most important disease in rice in the southern United States. Greenhouse and field studies were conducted to evaluate the potential use of plant growth-promoting rhizobacteria (PGPRs) in combination with a reduced rate of azoxystrobin application as a strategy to improve the current fungicide-reliant management. Of the nine antagonistic PGPR strains screened in the greenhouse, Bacillus subtilis strain MBI600 provided the most significant and consistent suppression of ShB. Efficacy of strain MBI600 was further evaluated at the concentrations of 0, 103, 106, 109, and 1011 CFU/ml alone or in combinations with 0, 17, 33, 50, 67, 83, and 100% of the recommended application rate (0.16 kg a.i./ha) of azoxystrobin. Strain MBI600 applied at 106,109, and 1011 CFU/ml alone was effective in reducing ShB severity. Combinations of this strain at these rates with ≥33% of the recommended applicatioduced rate of azoxystrobin application can be a viable management option for control of ShB while allowing producers to use less fungicide on rice.In recent years, citrus production has rapidly increased within the state of Georgia (USA), and there are now citrus plantings within at least 32 counties in residential, production, and nursery settings. Among the pathogens capable of infecting citrus are viroids, the smallest plant pathogens. Viroids are comprised of circular, single-stranded RNA ranging from 246-463 nucleotides in length (Ito et al., 2002). Hop stunt viroid (HSVd) is one of several viroids known to infect citrus. This viroid has been previously reported within Arizona, California, Florida, Texas, and Washington in the United States and in other locations throughout the world (Hadidi, 2017). HSVd is often spread mechanically on contaminated tools or through grafting. With a wide host range that includes the families Moraceae, Rosaceae, and Rutaceae (citrus), this viroid can easily move throughout a nursery and spread to other plants (Hadidi, 2017). Symptoms of HSVd include a discoloration and gumming of phloem tissues, stem pitting, bark sp the best of our knowledge, this is the first report of HSVd infecting Citrus reticulata 'Dekopon' in Georgia. If this viroid were to spread within the growing Georgia citrus industry, it could pose a significant threat to citrus plantings that contain susceptible varieties. Nursery stock infected with this viroid should be destroyed, and Georgia nursery producers and citrus growers should take appropriate precautions to prevent the spread of this viroid disease, including properly sanitizing tools used for citrus grafting and pruning. Further research is needed to determine the distribution of HSVd and its potential to impact commercial citrus production in Georgia.Soybean seedlings are vulnerable to different oomycete pathogens. Seed treatments containing the two anti-oomycete (oomicide) chemicals, metalaxyl-M (mefenoxam), and ethaboxam are used for the protection against oomycete pathogens. This study aimed to evaluate the influence of these two oomicides on the isolation probability of oomycetes from soybean taproot or lateral root sections. Soybean plants were collected between the first and third trifoliate growth stages from five Midwest field locations in 2016 and four of the same fields in 2017. Oomycetes were isolated from taproot and lateral root. In 2016, 369 isolation attempts were completed resulting in 121 isolates from the taproot and 154 isolates from the lateral root. In 2017, 468 isolation attempts were completed, with 44 isolates from the taproot and 120 isolates from the lateral roots. In three of nine site-years, the probability of isolating an oomycete from a taproot or lateral root section was significantly different. Seed treatments containing a g ml-1 with a median of 0.03 μg ml-1. The mean EC50 of the five most abundant species to ethaboxam ranged from 0.35 to 0.97 μg ml-1 of ethaboxam and from 0.02 to 0.04 μg ml-1 of mefenoxam. No shift in sensitivity to mefenoxam or ethaboxam was observed due to soybean seed treatment or year relative to the non-treated seed controls. In summary, this study contributed to the understanding of the composition of oomycete populations from different soybean root tissues, locations, years, and seed treatments. Finally, the effectiveness of seed treatments containing mefenoxam or metalaxyl plus ethaboxam can be effective in reducing the probability of oomycete isolation from soybean roots.The complex etiology of cranberry fruit rot (CFR) (Oudemans et al., 1998) has made it difficult to precisely identify the fungi involved in CFR and their relative importance in North America. To remedy this situation, a multiplex PCR approach targeting the 12 most commonly reported fungi in CFR was recently developed (Conti et al., 2019). However, in LY-3475070 nmr conducted in Eastern Canada, the molecular tool revealed the presence of an unknown fungus in more than 30% of the collected samples. #link# Analyses were thus undertaken to identify this species. From 117 rotten fruit collected at harvest in 2017, 34 samples of the unknown fungus, all morphologically similar, were isolated but not detected using the molecular tool. Their ITS ribosomal regions were sequenced using universal primers (Vilgalys and Hester, 1990; White et al., 1990) and searched against the GenBank database using the Blastn tool (Altschul et al., 1990). The top match was obtained with Godronia cassandrae (accession number MH855281 (Vu et al., 2019), 98-100% of identity and an E-value of 0.