Magnussenals1964

Z Iurium Wiki

Verze z 31. 12. 2024, 13:47, kterou vytvořil Magnussenals1964 (diskuse | příspěvky) (Založena nová stránka s textem „The interaction enthalpy of the paracetamol-activated carbon interaction presents values between - 18.0 and 2.3 J per molecule adsorbed. The Gibbs energy r…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The interaction enthalpy of the paracetamol-activated carbon interaction presents values between - 18.0 and 2.3 J per molecule adsorbed. The Gibbs energy released during the adsorption process is between - 33.1 and - 29.8 kJ mol-1.TetraBromoBisphenol-A (TBBPA) is a widely used brominated flame retardant and an emerging contaminant that has amassed significant environmental impacts. Though there are a few studies that report the bioremediation of TBBPA, there is no direct evidence to suggest a metabolic use of TBBPA as the sole electron acceptor, which offers an advantage in the complete and energy-efficient process of debromination under anaerobic conditions. In this study, Dehalococcoides mccartyi strain CG1 was identified to be capable of utilizing TBBPA as the sole electron acceptor at its maximum soluble concentrations (7.3 μM) coupled with cell growth. A previously characterized reductive dehalogenase (RDase), PcbA1, and six other RDases of strain CG1 were detected during TBBPA debromination via transcriptional and proteomic analyses. Furthermore, as a commonly co-contaminated brominated flame retardant of TBBPA, penta-BDEs were debrominated synchronously with TBBPA by strain CG1. This study provides deeper insights into the versatile dehalogenation capabilities of D. mccartyi strain CG1 and its role in in situ remediations of persistent organic pollutants in the environment.Anthelmintics are used to control infestations of ruminants by gastrointestinal nematodes. The limited metabolism of anthelmintics in animals result in their excretion in feces. These could be piled up in the floor of livestock farms, constituting a point source of environmental contamination, or used as manures in agricultural soils where they persist or move to water bodies. Hence the removal of anthelmintics from feces could mitigate environmental contamination. We hypothesized that a thiabendazole-degrading bacterial consortium would also degrade other benzimidazole anthelmintics like albendazole, fenbendazole, ricobendazole, mebendazole and flubendazole. In liquid culture tests the consortium was more effective in degrading compounds with smaller benzimidazole substituents (thiabendazole, albendazole, ricobendazole), rather than benzimidazoles with bulky substituents (fenbendazole, flubendazole, mebendazole). We then explored the bioaugmentation capacity of the consortium in sheep feces fortified with 5 and 50 mg kg-1 of thiabendazole, albendazole and fenbendazole. Bioaugmentation enhanced the degradation of all compounds and its efficiency was accelerated upon fumigation of feces, in the absence of the indigenous fecal microbial community. The latter contributes to anthelmintics degradation as suggested by the significantly lower DT50 values in fumigated vs non-fumigated, non-bioaugmented feces. Overall, bioaugmentation could be an efficient means to reduce environmental exposure to recalcitrant anthelmintic benzimidazoles.This investigation is the first of its kind to evaluate the interrelation of sulphate (SO42-) with conductive materials as well as their individual and synergetic effects on the removal of ammonium and organic pollutants in electroactive wetlands, also known as constructed wetland (CW) - microbial fuel cell (MFC). The role of MFC components in CW was investigated to treat the sulphate containing wastewater under a long-term operation without any toxicity build-up in the system. A comparative study was also performed between CW-MFC and CW, where sulphate containing wastewater (S-replete) and without sulphate wastewater (S-deplete) was assessed. The S-replete showed high NH4+ removal than the S-deplete, and the requesnce of removal was CW-MFC-replete>CW-MFC-deplete>CW-replete>CW-deplete. The chemical oxygen demand (COD) removal was high in the case of CW-MFC-replete, and the sequence of removal was CW-MFC-replete>CW-MFC-deplete>CW-deplete>CW-replete. X-ray photon spectroscopic study indicates 0.84% sulphur accumulation in CW-MFC-replete and 2.49% in CW-replete, indicating high sulphur precipitation in CW without the MFC component. The high relative abundance of class Deltaproteobacteria (7.3%) in CW-MFC-replete along with increased microbial diversity (Shannon index=3.5) rationalise the symbiosis of sulphate reducing/oxidising microbes and its impact on the treatment performance and electrochemical activity.Sunlight-oxidative ageing is a common and critical process for microplastics (MPs) in aquatic environments. O2•-, 1O2, and •OH generation has been widely proven in this process, which can alter metal speciation based on its reduction and oxidation potential. Herein, chemical speciation of Ag mediated by polystyrene (PS) MPs was determined under simulated sunlight irradiation. The O2•- generation on the PS MPs surfaces is the vital factor for Ag+ reduction, regardless of acid or base conditions. The 1O2 and •OH are dominant factors, and 1O2 played a more important role than •OH for its higher formation amount, causing oxidative dissolution of newly formed Ag0 nanoparticles (NPs). The Ag NPs can hetero-aggregate with PS MPs through electrostatic interactions with O-containing groups (C-O, C-OH and CO), and co-precipitate from the water phase. This hetero-aggregation can stabilize Ag NPs by inhibiting Ag NPs surface photooxidation and suppressing Ag+ release. Transformation of Ag species (from Ag+ to Ag0 NPs) mediated by sunlight with PS MPs significantly suppressed acute toxicity of Ag+ to Escherichia coli, Selenastrum capricornutum, Daphnia magna and zebrafish. This study emphasized that PS MPs play an important role in the speciation, migration and toxicity of Ag+ in freshwater environments.Due to the fact that plastic pollution is a global environmental problem of modern age, studies on the impact of these synthetic materials on aquatic, and especially fish organisms, are an important part of the ecosystem and human nutrition. In our study, the toxicity of pristine polyethylene (PE) microparticles (approx. 50 μm) on rainbow trout (Oncorhynchus mykiss) was tested in three different dietary concentrations - 0.5%, 2% and 5%. After six weeks of exposure, various health indices were evaluated. Electron microscopy of the intestine revealed the disintegration of PE particles to less then 5 μm in size, and thus we concluded that microplastics are able to reach tissues. The haematological profile revealed changes in total red blood cells count and haematocrit (5% PE) which could be associated with spleen congestion observed histologically. check details The marker of lipid peroxidation was increased in gills suggesting the disruption of balance in antioxidant enzymes capacity and histopathological imaging revealed inflammation in higher PE concentrations.

Autoři článku: Magnussenals1964 (Smed Villadsen)