Buttgallagher7112

Z Iurium Wiki

Verze z 30. 12. 2024, 23:30, kterou vytvořil Buttgallagher7112 (diskuse | příspěvky) (Založena nová stránka s textem „The word phenotyping can nowadays invoke visions of a drone or phenocart moving swiftly across research plots collecting high-resolution data sets on a wid…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The word phenotyping can nowadays invoke visions of a drone or phenocart moving swiftly across research plots collecting high-resolution data sets on a wide array of traits. This has been made possible by recent advances in sensor technology and data processing. Nonetheless, more comprehensive often destructive phenotyping still has much to offer in breeding as well as research. This review considers the 'breeder friendliness' of phenotyping within three main domains (i) the 'minimum data set', where being 'handy' or accessible and easy to collect and use is paramount, visual assessment often being preferred; (ii) the high throughput phenotyping (HTP), relatively new for most breeders, and requiring significantly greater investment with technical hurdles for implementation and a steeper learning curve than the minimum data set; (iii) detailed characterization or 'precision' phenotyping, typically customized for a set of traits associated with a target environment and requiring significant time and resources. While having been the subject of debate in the past, extra investment for phenotyping is becoming more accepted to capitalize on recent developments in crop genomics and prediction models, that can be built from the high-throughput and detailed precision phenotypes. selleck compound This review considers different contexts for phenotyping, including breeding, exploration of genetic resources, parent building and translational research to deliver other new breeding resources, and how the different categories of phenotyping listed above apply to each. Some of the same tools and rules of thumb apply equally well to phenotyping for genetic analysis of complex traits and gene discovery.Knowledge of the agronomic and physiological traits associated with genetic gains in yield is essential to improve understanding of yield-limiting factors and to inform future breeding strategies. The aim of this paper is to dissect the agronomic and physiological traits related to genetic gain and to propose an ideotype with high yield that is best adapted to Spanish Mediterranean environments. Six semi-dwarf (i.e. modern) durum wheat genotypes were grown in a wide range of growing conditions in Spain during two successive years. Diverse agronomic, physiological and leaf morphological traits were evaluated. Kernels spike-1 was the yield component most affected by the genetic gain. While no interaction between genotype and growing conditions existed for grain yield, the more productive genotypes were characterized by a plant height of around 85 cm, small erect flag leaves, more open stomata, a better balance between N sources and N sinks and a higher capacity to re-fix CO2 respired by the grain. Moreover, in general the non-laminar parts of the plants play a key role in providing assimilates during grain filling. The high heritability of most of the studied parameters allows their consideration as traits for phenotyping durum wheat better adapted to a wide range of Mediterranean conditions.Extreme heat events will challenge agricultural production and raise the risk of food insecurity. California is the largest agricultural producer in the United States, and climate change and extreme heat may significantly affect the state's food production. This paper provides a summary of the current literature on crop responses to extreme heat, with a focus on perennial agriculture in California. We highlight contemporary trends and future projections in heat extremes, and the range of plant responses to extreme heat exposure, noting the variability in plant tolerance and response across season, crop, and cultivar. We also review practices employed to mitigate heat damage and the capacity for those practices to serve as adaptation options in a warmer and drier future. Finally, we discuss current and future research directions aimed at increasing the adaptive capacity of perennial agriculture to the increased heat exposure anticipated with climate change. Collectively, the literature reviewed makes clear the need to understand crop responses and tolerances to heat within the context of climate change and climate extremes in order to sustain crop production, preserve agricultural communities, and bolster food security at local, national, and global scales.The horticulture sector is facing various challenges in the near future. Aside from maintaining or even improving yields, sustainable horticulture production is crucial to achieve food security. Reducing the reliance on agro-chemicals and/or increasing the efficiency of use under a changing climate is crucial. Natural biostimulants can play an important role in this regard, increasing production at a relatively low cost sustainably. Natural biostimulant feedstocks include leaf, root or seed extracts, either individually or in combination with others. Their positive effect on horticultural production is mostly due to plant growth-enhancing bioactive compounds such as phytohormones, amino acids, and nutrients. Here we review recent progress made in research and applications on plant-derived extracts with an emphasis on the use of these renewable biochemicals as biostimulants in sustainable horticulture. Moringa leaf extracts in particular have been shown to improve seed germination, plant growth and yield, nutrient use efficiency, crop and product quality traits (pre- and post-harvest), as well as tolerance to abiotic stresses. Although horticulture production relies on synthetic fertilisers to maintain and improve production, the use of plant-derived biostimulants such as moringa leaf extracts may be an option to reduce quantities needed and thus contribute in achieving global food security sustainably.Phenotypic plasticity refers to changes expressed by a genotype across different environments and is one of the major means by which plants cope with environmental variability. Multi-fold differences in phenotypic plasticity have been noted across crops, with wild ancestors and landraces being more plastic than crops when under stress. Plasticity in response to abiotic stress adaptation, plant architecture, physio-reproductive and quality traits are multi-genic (QTL). Plasticity QTL (pQTL) were either collocated with main effect QTL and QEI (QTL × environment interaction) or located independently from the main effect QTL. For example, variations in root plasticity have been successfully introgressed to enhance abiotic stress adaptation in rice. The independence of genetic control of a trait and of its plasticity suggests that breeders may select for high or low plasticity in combination with high or low performance of economically important traits. Trait plasticity in stressful environments may be harnessed through breeding stress-tolerant crops.

Autoři článku: Buttgallagher7112 (Nichols Haugaard)