Hermannmccormick6733

Z Iurium Wiki

Verze z 30. 12. 2024, 23:27, kterou vytvořil Hermannmccormick6733 (diskuse | příspěvky) (Založena nová stránka s textem „The problem of neurotoxicity associated with some anticancer drugs is also highlighted. Our review encourages further research to better encode the hidden…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The problem of neurotoxicity associated with some anticancer drugs is also highlighted. Our review encourages further research to better encode the hidden potential of anticancer drugs with the aim of developing prospective repurposed drugs with no toxicity for neurodegenerative disorders.Spinal cord injury (SCI) is an independent risk factor for type 2 diabetes, and may induce insulin resistance that leads to this disease. Studies have shown that greater phosphoinositide 3-kinase (PI3K) activation in the hypothalamus leads to activation of the anti-inflammatory pathway, and the anti-inflammatory reflex may protect against insulin resistance and type 2 diabetes. However, the importance of this phenomenon in type 2 diabetes pathogenesis after SCI remains elusive. In the present study, the expression of c-Fos in the hypothalamus of rats with SCI was elevated, and the hypothalamus injury was observer following SCI. Then we showed that SCI could induce increased levels of blood glucose and glucose tolerance in rats. Also, we found that SCI could damage the liver, adipocyte and pancreas, and led to lipid position in liver. Western blots were used to detect the level of PI3K and p-Akt in the hypothalamus, and the results showed a significant downregulation of PI3K and p-Akt after SCI. TP-0184 cell line Furthermore, to verify the activity of the PI3K signaling pathway, immunofluorescence was used to examine the expression of neurons positive for p-S6 (a marker of PI3K activation) after SCI. The results showed that the expression of p-S6-positive neurons decreased after SCI. In addition, the effect of SCI on peripheral inflammation was also investigated. Following SCI, the serum levels of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 increased. Collectively, our results suggest abnormality in glucose metabolism after SCI, and demonstrate that SCI may impair activation of the PI3K signaling pathway in the hypothalamus. The reduced activity of the PI3K signaling pathway in the hypothalamus may lead to peripheral inflammation, which might be the mechanism underlying the development of insulin resistance and type 2 diabetes following SCI.Dopaminergic dysregulation in nucleus accumbens has been implicated in the origin of schizophrenia. Accumbal cholinergic interneurons exert powerful modulatory control of local dopamine function, through nicotinic receptors located on dopamine terminals. Fast-scan cyclic voltammetry in rat brain slices in vitro was used to measure dopamine release evoked by high-frequency electrical stimulation, mimicking phasic dopamine activity. We investigated whether cholinergic regulation of stimulated dopamine release was disrupted by pretreatment with phencyclidine, a non-competitive NMDA receptor antagonist, which provides a well validated animal model of schizophrenia. Dihydro-β-erythroidine, an antagonist at β2-subuit containing nicotinic receptors, caused a concentration-dependent enhancement of stimulated dopamine release, indicating cholinergic inhibitory control over dopamine release. The agonist, nicotine, also caused concentration-dependent increases in release, consistent with rapid desensitisation of the receptors previously described. In slices taken from animals pretreated with phencyclidine, the augmentation of electrically-stimulated dopamine release elicited by both drugs was attenuated, particularly when each drug was applied at high concentration. In addition, the concentration-dependence of each drug effect was lost. Taken together these findings indicate that pretreatment with phencyclidine causes changes in acetylcholine systems modulating dopamine release in accumbens. Since phencyclidine treatment was terminated at least a week before the slices were taken, the effects are due to long-term changes in function resulting from the treatment, rather than from transient changes due to the presence of the drug at test. Such enduring dysregulation of cholinergic control of phasic dopamine release could account for deficits in behaviours mediated by accumbal dopamine seen in schizophrenia, and may provide a route for novel therapeutic strategies to treat the disease.Stress and lipopolysaccharide (LPS) animal models are used for screening antidepressants and anxiolytic drugs. However, the lacunae for their combination (Restraint stress; RS and LPS) impacting inflammation, apoptosis and antioxidant signaling have not been explored. The present study investigated RS + LPS-induced neurobehavioral and neurochemical anomalies in hippocampus (HIP) and frontal cortex (FC) of mice. Furthermore, citrus-derived flavanone glycoside (Hesperidin; HSP) neuroprotective ability was also confirmed in this model. Male Balb/c mice were given RS (for 28 days) and LPS (single dose, 0.83 mg/kg, i.p.) on 28th day. RS + LPS challenge caused neurobehavioral deficits in mice as evaluated over elevated plus maze (EPM), open field test (OFT), light-dark box test, tail suspension test (TST), forced swim test (FST), sucrose preference test (SPT). Moreover, RS + LPS caused alteration via enhanced oxido-nitrosative stress, proinflammatory cytokines level (serum, HIP, FC), lower antioxidants (GSH, SOD, CAT), increased IBA-1, GFAP, TLR4/NF-κB, p38MAPK/JNK while decreased Nrf2/BDNF/HO-1 expression in HIP and FC of mice. The 21 days (8-28th day), HSP (50 and 100 mg/kg, p.o.) treatment significantly alleviated the anxiety and depressive-like behavior and reversed neurochemical, histopathological changes. HSP exerted the neuroprotective effect via its anti-inflammatory, anti-apoptotic, antioxidant and neurogenesis potential in treating psychiatric illness alone or associated with other diseases.In this study, we investigated whether melatonin treatment prevents development of neuropathic pain via suppression of glial mitogen-activated protein kinases (MAPKs) activation in the cuneate nucleus (CN) in a lysophosphatidylcholine (LPC)-induced median nerve demyelination neuropathy model. Rats were fed orally with melatonin once a day at a dose of 37.5, 75, or 150 mg/kg 30 min before until 3 days after LPC treatment. Subsequently, behavioral tests were conducted on these animals, and immunohistochemistry and immunoblotting were used for qualitative and quantitative analysis of glia and MAPKs, including ERK, JNK, and p38, activation. Enzyme-linked immunosorbent assays were applied to measure pro-inflammatory cytokine responses. Furthermore, intra-CN microinjection of S26131 (MT1 receptor antagonist), 4P-PDOT (MT2 receptor antagonist), or prazosin (MT3 receptor antagonist) were performed to investigate the association between melatonin receptor subtypes and effects of melatonin on demyelination neuropathy. LPC treatment of the median nerve induced a significant increase in glial fibrillary acidic protein (GFAP; an astrocyte marker) and ED1 (an activated microglia marker) immunoreactivity in the ipsilateral CN and led to development of neuropathic pain behavior.

Autoři článku: Hermannmccormick6733 (Estrada Ferrell)