Aarupmelvin0717
17% (NS1) and 88.33% (VP3), and the positive rates of natural infection were 88.97% (NS1) and 86.21% (VP3), which distinguish between the GPV infection and vaccine immunization antibodies. The establishment of 2 indirect ELISA methods using NS1 and VP3 proteins as inclusion antigens provides a new method for detecting GPV infection and inactivated immune antibodies, which lays a foundation for the serological diagnosis and epidemiological monitoring of GPV. Coccidiosis is a disease caused by Eimeria spp., resulting in approximately 3 billion US dollar loss in the poultry industry annually. The present study evaluated the effects of potential feed additives, 2-Nitro-1-propanol (NP) and nitroethanol (NE), on control of coccidiosis. An in vitro experiment indicated that both NP and NE inhibited the development of sporozoites in Madin-Darby bovine kidney cells (MDBK). The in vivo study was further conducted to evaluate the effects of NP and NE on growth performance, nitrogen-corrected apparent metabolizable energy (AMEn), and intestinal lesion scores of broilers challenged with Eimeria spps. Six treatments were tested in the study, including the nonchallenged control, challenged control, 100 ppm NP, 200 ppm NP, 100 ppm NE, and 200 ppm NE. Broilers were fed the treatment diets from day 12 until the end of the trial. All birds except the unchallenged control were challenged with Eimeria maxima, Eimeria tenella, and Eimeria acervulina on day 14. The growth performance was calculated, and the intestinal lesion was scored on day 20. The results showed that Eimeria challenge significantly reduced growth performance, increased intestinal lesion scores, and decreased AMEn compared with the nonchallenged control group. Birds fed with 200 ppm of NP had reduced growth performance compared with the nonchallenged control and challenged control. However, the supplementation of NP significantly improved AMEn and reduced cecal damage. Overall, NP and NE reduced sporozoites numbers in the MDBK cells. NP improved dietary digestibility of energy and reduces lesion scores in the ceca but could not maintain growth performance in broiler chickens infected with Eimeria spp. This study was conducted to evaluate the effects and combinational effects of Bacillus subtilis (BS) and montmorillonite (MMT) on laying performance, gut mucosal oxidation status, and intestinal immunological and physical barrier functions of laying hens. Three hundred sixty laying hens (29-week-old) were randomly assigned to a 2 × 2 factorial arrangement of treatments (n = 6) for 10 wk as follows (1) basal diet; (2) the basal diet plus 5 × 108 cfu BS/kg; (3) the basal diet plus 0.5 g MMT/kg; and (4) the basal diet plus 5 × 108 cfu BS/kg and 0.5 g MMT/kg. Dietary supplementation with BS increased egg production and egg mass, the activities of catalase (CAT) and total superoxide dismutase in the intestinal mucosa, and villus height and villus height-to-crypt depth ratio of the jejunum (P less then 0.05) but downregulated the mRNA expression levels of toll-like receptor 4 and myeloid differentiation factor 88 (MyD88) in the duodenum and jejunum, interleukin 1 beta in the duodenum, and nuclear factor kappa B P65 (NF-κB P65) and tumor necrosis factor alpha in the jejunum (P less then 0.05). Dietary supplementation with MMT increased egg production and egg mass, the concentration of secretory immunoglobulin A in the duodenum, and the occludin mRNA expression level in the jejunum (P less then 0.05) but reduced feed conversion ratio, malondialdehyde concentration in the duodenum and jejunum, and the mRNA expression level of MyD88 in the jejunum (P less then 0.05). In addition, there was an interaction effect between BS and MMT supplementation on the CAT activity and the MyD88 mRNA expression level in the duodenum and the mRNA expression level of occludin in the jejunum (P less then 0.05). In conclusion, dietary BS and MMT and their combination may improve the intestinal health status of laying hens, which may contribute to the increase in hens' laying performance. The symbiosis of host and intestinal microbiota constitutes a microecosystem and plays an important role in maintaining intestinal homeostasis and regulating the host's immune system. Eimeria tenella, an obligate intracellular apicomplexan parasite, can cause coccidiosis, a serious intestinal disease. In this study, the effects of E. tenella infection on development parameters (villus height, crypt depth, mucosa thickness, muscularis thickness, and serosa thickness) and microbiota in chicken cecum were investigated. Fourteen-day-old male Hy-Line Variety Brown layer chickens were inoculated with sporulated oocysts of E. tenella. Cecal tissues were collected 7 d after inoculation. Relative density of goblet cells and glycoproteins were determined by Alcian blue periodic acid-Schiff staining and periodic acid-Schiff staining, respectively. Intestinal development parameters were also evaluated. Cecal contents were extracted, and the composition of cecal microflora was examined by Illumine sequencing in the V3-V4 region of the 16S rRNA gene. Results indicated that E. tenella infection destroyed the structure of cecal tissue and reduced the relative density of goblet cells and glycoproteins. Sequencing analysis indicated that E. tenella infection altered the diversity and composition of cecal microbiota. The populations of Proteobacteria, Enterococcus, Incertae, and Escherichia-Shigella decreased, and those of Bacteroidales and Rikenella significantly increased in the infected group compared with those in the control group. Hence, the pathological damage caused by E. (S)-Glutamic acid tenella infection is associated with cecal microbiota dysbiosis, and this finding may be used to develop an alternative measure for alleviating the effect of coccidiosis on the poultry industry. Newcastle disease virus (NDV) is a major threat to the poultry industry worldwide, with a diversity of genotypes associated with severe economic losses in all poultry sectors. Class II genotype VII NDV are predominant in the Middle East and Asia, despite intensive vaccination programs using conventional live and inactivated NDV vaccines. In Egypt, the disease is continuously spreading, causing severe economical losses in the poultry industry. In this study; the protective efficacy of a commercial, inactivated recombinant genotype VII NDV-matched vaccine (KBNP-C4152R2L strain) against challenge with the velogenic NDV strain (Chicken/USC/Egypt/2015) was evaluated in commercial layers. Two vaccination regimes were used; live NDV genotype II (LaSota) vaccine on days 10, 18, and 120, with either the inactivated NDV genotype II regime or inactivated NDV genotype VII-matched vaccine regime on days 14, 42, and 120. The 2 regimes were challenged at the peak of egg production on week 26. Protection by the 2 regimes was evaluated after experimental infection, based on mortality rate, clinical signs, gross lesions, virus shedding, seroconversion, and egg production schedule.