Ahmedneergaard9870

Z Iurium Wiki

Verze z 28. 12. 2024, 17:48, kterou vytvořil Ahmedneergaard9870 (diskuse | příspěvky) (Založena nová stránka s textem „Overall our results led to the conclusion that nest boxes do not create ecological traps for European rollers in this study area. However, other species ma…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Overall our results led to the conclusion that nest boxes do not create ecological traps for European rollers in this study area. However, other species may be more sensitive to microclimatic variations or less able to avoid the least favorable nest boxes. These findings could help to inform the placement of nest boxes in order to reduce extreme temperatures and variation in humidity rates. Future studies could compare nest types for other fitness parameters, such as juvenile body condition or survival. We also recommend the ecological trap hypothesis as a useful framework to evaluate the outcomes of artificial devices used for conservation.Microbial symbionts can influence their hosts in stunningly diverse ways. Emerging research suggests that an underappreciated facet of these relationships is the influence microbes can have on their host's responses to novel, or stressful, environmental conditions. We sought to address these and related questions in populations resulting from the recent introduction and subsequent rapid range expansion of Onthophagus taurus dung beetles. Specifically, we manipulated both microbial communities and rearing temperature to detect signatures of developmental and life history differentiation in response to the local thermal conditions in two populations derived from the southern most (Florida) and northern most (Michigan) extremes of the exotic Eastern U.S. range of O. taurus. We then sought to determine the contributions, if any, of host-associated microbiota to this differentiation. We found that when reared under common garden conditions individuals from Florida and Michigan populations differed significantly in developmental performance measures and life history traits, consistent with population divergence. At the same time, and contrary to our predictions, we failed to find support for the hypothesis that animals perform better if reared at temperatures that match their location of origin and that performance differences may be mediated by host-associated microbiota. (E/Z)-BCI order Instead, we found that microbiome swapping across host populations improved developmental performance in both populations, consistent with enemy release dynamics. We discuss the implications of our results for our understanding of the rapid spread of exotic O. taurus through the Eastern United States and the significance of symbiosis in host responses to novel environmental conditions more broadly.Population genetic structure in the marine environment can be influenced by life-history traits such as developmental mode (biphasic, with distinct adult and larval morphology, and direct development, in which larvae resemble adults) or habitat specificity, as well as geography and selection. Developmental mode is thought to significantly influence dispersal, with direct developers expected to have much lower dispersal potential. However, this prediction can be complicated by the presence of geophysical barriers to dispersal. In this study, we use a panel of 8,020 SNPs to investigate population structure and biogeography over multiple spatial scales for a direct-developing species, the New Zealand endemic marine isopod Isocladus armatus. Because our sampling range is intersected by two well-known biogeographic barriers (the East Cape and the Cook Strait), our study provides an opportunity to understand how such barriers influence dispersal in direct developers. On a small spatial scale (20 km), gene flow betwtential meta-population detected in the Auckland region.Temporal patterns in communities have gained widespread attention recently, to the extent that temporal changes in community composition are now termed "temporal beta-diversity." Previous studies of beta-diversity have made use of two classes of dissimilarity indices incidence-based (e.g., Sørensen and Jaccard dissimilarity) and abundance-based (e.g., Bray-Curtis and Ružička dissimilarity). However, in the context of temporal beta-diversity, the persistence of identical individuals and turnover among other individuals within the same species over time have not been considered, despite the fact that both will affect compositional changes in communities. To address this issue, I propose new index concepts for beta-diversity and the relative speed of compositional shifts in relation to individual turnover based on individual identity information. Individual-based beta-diversity indices are novel dissimilarity indices that consider individual identity information to quantitatively evaluate temporal change in individual turnover and community composition. I applied these new indices to individually tracked tree monitoring data in deciduous and evergreen broad-leaved forests across the Japanese archipelago with the objective of quantifying the effect of climate change trends (i.e., rates of change in both annual mean temperature and annual precipitation) on individual turnover and compositional shifts at each site. A new index explored the relative contributions of mortality and recruitment processes to temporal changes in community composition. Clear patterns emerged showing that an increase in the temperature change rate facilitated the relative contribution of mortality components. The relative speed of compositional shift increased with increasing temperature change rates in deciduous forests but decreased with increasing warming rates in evergreen forests. These new concepts provide a way to identify novel and high-resolution temporal patterns in communities.Litter inputs can influence soil respiration directly through labile C availability and, indirectly, through the activity of soil microorganisms and modifications in soil microclimate; however, their relative contributions and the magnitude of any effect remain poorly understood. We synthesized 66 recently published papers on forest ecosystems using a meta-analysis approach to investigate the effect of litter inputs on soil respiration and the underlying mechanisms involved. Our results showed that litter inputs had a strong positive impact on soil respiration, labile C availability, and the abundance of soil microorganisms, with less of an impact related to soil moisture and temperature. Overall, soil respiration was increased by 36% and 55%, respectively, in response to natural and doubled litter inputs. The increase in soil respiration induced by litter inputs showed a tendency for coniferous forests (50.7%)> broad-leaved forests (41.3%)> mixed forests (31.9%). This stimulation effect also depended on stand age with 30- to 100-year-old forests (53.

Autoři článku: Ahmedneergaard9870 (Konradsen Pedersen)