Albrechtsenkelleher5161
Single frequency laser sources with low frequency noise are now at the heart of precision high-end science, from the most precise optical atomic clocks to gravitational-wave detection, thanks to the rapid development of laser frequency stabilization techniques based on optical or electrical feedback from an external reference cavity. Despite the tremendous progress, these laser systems are relatively high in terms of complexity and cost, essentially suitable for the laboratory environment. Nevertheless, more and more commercial applications also demand laser sources with low noise to upgrade their performance, such as fiber optic sensing and LiDAR, which require reduced complexity and good robustness to environmental perturbations. learn more Here, we describe an ultralow noise DFB fiber laser with self-feedback mechanics that utilizes the inherent photothermal effect through the regulation of the thermal expansion coefficient of laser cavity. Over 20 dB of frequency noise reduction below several tens of kilohertz Fourier frequency is achieved, limited by the fundamental thermal noise, which is, to date, one of the best results for a free-running DFB fiber laser. The outcome of this work offers promising prospects for versatile applications due to its ultralow frequency noise, simplicity, low cost, and environmental robustness.Sensors based on Fano resonance (FR) have become a promising platform for various biological and chemical applications. However, most investigations on FR are limited to the generation of individual resonance. In this paper, based on the coupling between surface plasmon polariton (SPP) and two photonic waveguide modes, a dual-FR system is designed and analyzed. To explain the coupling mechanism, an extended temporal coupled-mode model is established to provide the physical insight. The spectral response obtained from the model matches well with the numerical one. Due to the decoupled nature of the FRs, a self-calibrated or dual-parameter sensing scheme for refractive index and temperature is proposed. The refractive index sensitivity up to 765 nm/RIU and temperature sensitivity up to 0.087 nm/°C are obtained by wavelength interrogation with figure-of-merit (FOM) up to 33260.9 RIU-1 and 3.78 °C-1 respectively. The proposed sensor provides great potential in fields of the multi-parameter sensing.We propose a new concept of a foveated display with a single display module. A multi-resolution and wide field of view (FOV) can be simultaneously achieved using only a single display, based on temporal polarization-multiplexing. The polarization-dependent lens set functions as an optical window or beam expander system depending on the polarization state, which can provide two operating modes fovea mode for a high-resolution and peripheral mode for a wide viewing angle. By superimposing two-mode images, the proposed system supports a foveated and wide FOV image without an ultra-high-resolution display. We demonstrate the feasibility of the proposed configuration through the proof-of-concept system.A potential technology applied in optical storage, the polarization holography has attracted much attention. In polarization holography, not only the amplitude and phase but also the polarization state is applied to record the information. What is meant by faithful reconstruction is that the reconstructed wave is identical to the signal wave. In the previously reported experiments about faithful reconstruction in orthogonal polarization holography, all the reading waves are identical to the reference waves of recording stage. It may result in a misunderstanding that the reading wave being identical to the reference wave of recording stage is the prerequisite for faithful reconstruction. We designed the experiments to observe the faithful reconstruction read by different polarized waves, where two orthogonal elliptically polarized waves are applied in the recording stage and phenanthrenequinone-doped poly methyl methacrylate (PQ/PMMA) is used as the recording material. By controlling the exposure time of recording material, the faithful reconstruction may be observed when the reading wave is the linearly polarized wave and the elliptically polarized wave, where neither reading wave is the same as the reference wave. The result may be of help for us to understand the reconstructed characteristics of orthogonal polarization holography.The spectral filtering effect is essential to dissipative dynamics in an all-normal-dispersion (ANDi) mode-locked fiber laser. In this study, we numerically and experimentally demonstrate the spectral filtering process of a nonlinear optical loop mirror (NOLM). Taking advantage of the 40/60 NOLM's spectral filtering ability, we designed a novel all-polarization-maintaining ANDi mode-locked fiber laser without using a separate spectral filter. The NOLM functions as an artificial saturable absorber and a spectral filter in an ANDi cavity. During mode locking, we observed that the NOLM decreased the spectral width of the pulse from 5.46 to 4.38 nm. The fiber laser generated 509-fs compressed pulses at the repetition rate of 13.4 MHz. Our work provides a promising novel and compact ANDi fiber laser for ultrafast photonic applications.In this paper, low frequency noise and dark current correlation is investigated as a function of reverse bias and temperature for short-wave infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared (LWIR) HgCdTe homo-junction photodetectors. Modelling of dark current-voltage characteristics shows that the detectors have ohmic-behavior under small reverse bias, thus enabling further analysis of 1/f noise-current dependences with the empirical square-law relation (SI ∼ I2) at different temperature regions. It is found that for the SWIR and MWIR devices, the total 1/f noise spectral density at arbitrary temperatures can be modelled by the sum of shunt and generation-recombination noise as SI(T,f)=[α S H ISH2(T)+αG-RIG-R2(T)]/f, with no contribution from the diffusion component observed. On the other hand, for the LWIR device the diffusion component induced 1/f noise that cannot be overlooked in high temperature regions, and a 1/f noise-current correlation of SI(T,f)=αs[IDIFF2(T)+IG-R2(T)]+α S H ISH2(T)/f is proposed, with a shared noise coefficient of αs ≅ 1 × 10-9 which is close to that calculated for shunt noise.