Sparksbager4344
In the last decade, multiparametric magnetic resonance imaging (mpMRI) has been expanding its role in prostate cancer detection and characterization. In this work, 19 patients with clinically significant peripheral zone (PZ) tumours were studied. Tumour masks annotated on the whole-mount histology sections were mapped on T2-weighted (T2w) and diffusion-weighted (DW) sequences. Gray-level histograms of tumoral and normal tissue were compared using six first-order texture features. Multivariate analysis of variance (MANOVA) was used to compare group means. Mean intensity signal of ADC showed the highest showed the highest area under the receiver operator characteristics curve (AUC) equal to 0.85. MANOVA analysis revealed that ADC features allows a better separation between normal and cancerous tissue with respect to T2w features (ADC P = 0.0003, AUC = 0.86; T2w P = 0.03, AUC = 0.74). MANOVA proved that the combination of T2-weighted and apparent diffusion coefficient (ADC) map features increased the AUC to 0.88. Histogram-based features extracted from invivo mpMRI can help discriminating significant PZ PCa.Hepatocellular carcinoma (HCC) is the sixth more frequent cancer worldwide. This type of cancer has a poor overall survival rate mainly due to underlying cirrhosis and risk of recurrence outside the treated lesion. Quantitative imaging within a radiomics workflow may help assessing the probability of survival and potentially may allow tailoring personalized treatments. In radiomics a large amount of features can be extracted, which may be correlated across a population and very often can be surrogates of the same physiopathology. This issues are more pronounced and difficult to tackle with imbalanced data. Feature selection strategies are therefore required to extract the most informative with the increased predictive capabilities. In this paper, we compared different unsupervised and supervised strategies for feature selection in presence of imbalanced data and optimize them within a machine learning framework. Multi-parametric Magnetic Resonance Images from 81 individuals (19 deceased) treated with stereotactic body radiation therapy (SBRT) for inoperable (HCC) were analyzed. Pre-selection of a reduced set of features based on Affinity Propagation clustering (non supervised) achieved a significant improvement in AUC compared to other approaches with and without feature pre-selection. By including the synthetic minority over-sampling technique (SMOTE) for imbalanced data and Random Forest classification this workflow emerges as an appealing feature selection strategy for survival prediction within radiomics studies.Magnetic resonance fingerprinting is a recent quantitative MRI technique that simultaneously acquires multiple tissue parameter maps (e.g., T1, T2, and spin density) in a single imaging experiment. In our early work, we demonstrated that the low-rank/subspace reconstruction significantly improves the accuracy of tissue parameter maps over the conventional MR fingerprinting reconstruction that utilizes simple pattern matching. In this paper, we generalize the low-rank/subspace reconstruction by introducing a multilinear low-dimensional image model (i.e., a low-rank tensor model). With this model, we further estimate the subspace associated with magnetization evolutions to simplify the image reconstruction problem. The proposed formulation results in a nonconvex optimization problem which we solve by an alternating minimization algorithm. We evaluate the performance of the proposed method with numerical experiments, and demonstrate that the proposed method improves the conventional reconstruction method and the state-of-the-art low-rank reconstruction method.Laparoscopic cholecystectomy surgery is a minimally invasive surgery to remove the gallbladder, where surgical instruments are inserted through small incisions in the abdomen with the help of a laparoscope. Identification of tool presence and precise segmentation of tools from the video is very important in understanding the quality of the surgery and training budding surgeons. Precise segmentation of tools is required to track the tools during real-time surgeries. In this paper, a new pixel-wise instance segmentation algorithm is proposed, which segments and localizes the surgical tool using spatio-temporal deep network. The performance of the proposed has been compared with the state-of-the-art image-based instance segmentation method using the Cholec80 dataset. It is also compared with methods in the literature using frame-level presence detection and spatial detection with good results.This paper proposes a deep learning image segmentation method for the purpose of segmenting wound-bed regions from the background. Our contributions include proposing a fast and efficient convolutional neural networks (CNN)-based segmentation network that has much smaller number of parameters than U-Net (only 18.1% that of U-Net, and hence the trained model has much smaller file size as well). In addition, the training time of our proposed segmentation network (for the base model) is only about 40.2% of that needed to train a U-Net. Furthermore, our proposed base model also achieved better performance compared to that of the U-Net in terms of both pixel accuracy and intersection-over-union segmentation evaluation metrics. We also showed that because of the small footprint of our efficient CNN-based segmentation model, it could be deployed to run in real-time on portable and mobile devices such as an iPad.Automatic extraction of the lumen-intima border (LIB) and the media-adventitia border (MAB) in intravascular ultrasound (IVUS) images is of high clinical interest. Despite the superior performance achieved by deep neural networks (DNNs) on various medical image segmentation tasks, there are few applications to IVUS images. The complicated pathological presentation and the lack of enough annotation in IVUS datasets make the learning process challenging. Several existing networks designed for IVUS segmentation train two groups of weights to detect the MAB and LIB separately. In this paper, we propose a multi-scale feature aggregated U-Net (MFAU-Net) to extract two membrane borders simultaneously. The MFAU-Net integrates multi-scale inputs, the deep supervision, and a bi-directional convolutional long short-term memory (BConvLSTM) unit. Netarsudil chemical structure It is designed to sufficiently learn features from complicated IVUS images through a small number of training samples. Trained and tested on the publicly available IVUS datasets, the MFAU-Net achieves both 0.