Valdezfyhn6344

Z Iurium Wiki

Verze z 25. 12. 2024, 15:28, kterou vytvořil Valdezfyhn6344 (diskuse | příspěvky) (Založena nová stránka s textem „Orexin receptors (OXRs) are promiscuous G-protein-coupled receptors that signal via several G-proteins and, putatively, via other proteins. On which basis…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Orexin receptors (OXRs) are promiscuous G-protein-coupled receptors that signal via several G-proteins and, putatively, via other proteins. On which basis the signal pathways are selected and orchestrated is largely unknown. We also have an insufficient understanding of the kind of signaling that is important for specific types of cellular responses. OXRs are able to form complexes with several other G-protein-coupled receptors in vitro, and one possibility is that the complexing partners regulate the use of certain signal transducers. In the central nervous system neurons, the main acute downstream responses of OXR activation are the inhibition of K+ channels and the activation of the Na+/Ca2+ exchanger and non-selective cation channels of unknown identity. The exact nature of the intracellular signal chain between the OXRs and these downstream targets is yet to be elucidated, but the Gq-phospholipase C (PLC) protein kinase C pathway - which is a significant signaling pathway for OXRs in recombinant cells - may be one of the players in neurons. The Gq-PLC pathway may also, under certain circumstances, take the route to diacylglycerol lipase, which leads to the production of the potent endocannabinoid (eCB), 2-arachidonoyl glycerol, and thereby connects orexins with eCB signaling. In addition, OXRs have been studied in the context of neurodegeneration and cancer cell death. Overall, OXR signaling is complex, and it can change depending on the cell type and environment.The discovery of the hypocretins/orexins (HCRTs) has revolutionized sleep science in the last two decades. A combination of anatomical tracing methods, optogenetics, and pharmacology is delineating a blueprint of functional inputs and outputs of the HCRT system. Here, we discuss several models of HCRT action that involve the integration between physiological variables, circadian output, and sleep homeostasis. Generation of activity maps during the sleep-wake cycle at the cellular level will allow investigators to decipher computational frameworks modeling operations of HCRT networks.Orexins regulate a wide variety of biological functions, most notably the sleep-wake cycle, reward and stress processing, alertness, vigilance, and cognitive functioning. Alterations of central and peripheral orexin levels are linked to conditions such as narcolepsy, anorexia nervosa, age-related cognitive decline, and neurodegenerative disease. Preliminary studies suggest that orexin mimetics can safely promote the wake signal via orexin agonism during the day and that orexin receptor antagonists can promote the sleep signal during the night. Thus, novel orexin therapies have the potential to either improve memory, cognition, and daytime performance directly or indirectly, through promotion of good sleep. The full scope of the therapeutic potential of orexin therapies remains to be elucidated.Since its description in the 19th century, narcolepsy type 1 (NT1) has been considered as a model sleep disorder, and after the discovery of rapid eye movement (REM) sleep onset in the disorder, a gateway to understanding REM sleep. The discovery that NT1 is caused by hypocretin/orexin deficiency, together with neurochemical studies of this system, has helped to establish how this neuropeptide regulates the organization of sleep and wake in humans. Current analyses suggest that the main functions of the hypocretin/orexin system are (1) maintenance of wakefulness in the face of moderate sleep deprivation; (2) passive wake promotion, especially in the evening, driven by the circadian clock; (3) inhibition of REM sleep, with possible differential modulating effects on various subcomponents of the sleep-stage, explaining REM sleep dissociation events in NT1. Narcolepsy is also associated with an inability to consolidate sleep, a more complex phenotype that may result from secondary changes or be central to the role of hypocretin in coordinating the activity of other sleep- and wake-promoting systems. Novel technologies, such as the use of deep learning analysis of electroencephalographic signals, is revealing a complex pattern of sleep abnormalities in human narcolepsy that can be used diagnostically. The availability of novel devices measuring sleep 24 h per day also holds promise to provide new insights into how brain electrical activity and muscle tone are regulated by hypocretin.Hypothalamic hypocretin/orexin neurons have been initially conceptualized as slow, modulatory controllers of behavior. Furthermore, their behavioral effects have been assumed to be a secondary consequence of their impact on arousal. However, cellular-resolution calcium imaging and optogenetic studies show that orexin neurons regulate self-generated and sensory-evoked movement on rapid, subsecond timescales. Orexin cell activity rapidly and transiently peaks before and during movements. Optogenetic prevention of this activation reduces the probability of locomotion initiation, and optogenetic mimicry of orexin cell activation rapidly causes locomotion. Neural ensemble calcium imaging experiments reveal that the same orexin cells whose activity underlies movement initiation display subsecond-latency responses to diverse sensory stimuli. Conteltinib molecular weight These findings establish orexin neurons as rapid and strong sensorimotor controllers that are in many ways operationally similar to classic subcortical movement controllers, such as midbrain dopamine neurons. While a scientific definition of "arousal" is still lacking, the subsecond-scale sensorimotor control by orexin neurons could be viewed as reminiscent of a motor rather than an arousal system.Sleep is one of the pillars of health. Experimental models of acute sleep loss, of chronic partial sleep deprivation, and of sleep fragmentation in healthy sleepers are helpful models of sleep deficiency produced by insufficient sleep duration, sleep timing, and sleep disorders. Sleep deficiency is associated with changes in markers associated with risk for disease. These include metabolic, inflammatory, and autonomic markers of risk. In addition, sleep disruption and sleep deficits lead to mood instability, lack of positive outlook, and impaired neurobehavioral functioning. On a population level, insufficient sleep is associated with increased risk for hypertension and diabetes. Sleep disturbance is very common, and about half the population will report that they have experienced insomnia at some time in their lives. Approximately 10% of the population describe daytime impairment due to sleep disturbance at night, consistent with a diagnosis of insomnia disorder. The hypothalamic neuropeptides, orexin-A and orexin-B, act through G-protein-coupled receptors (orexin-1 and orexin-2 receptors).

Autoři článku: Valdezfyhn6344 (Rollins Flanagan)