Guthriebak4086
Groundwater flow through aquifer soils or packed bed systems can fluctuate for various reasons, which could affect the concentration of natural colloids and per- and polyfluoroalkyl substances (PFAS) in the pore water. In such cases, PFAS concentration could either decrease due to matrix diffusion of PFAS or increase by the detachment of colloids carrying PFAS. Yet, the effect of flow fluctuation on PFAS transport or release in porous media has not been examined. To examine the relative importance of either process, we interrupted the flow during an injection of groundwater spiked with perfluorobutanoic acid (PFBA), perfluorooctanoic acid (PFOA), and bromide as conservative tracer through clay-rich soil, so that diffusive transport would be prominent during flow interruption. After flow interruption, the PFAS concentration did not decrease indicating an insignificant contribution of matrix diffusion. The concentration increased, potentially due to enhanced release of colloid-associated PFAS. Analysis of samples before and after flow interruption by particle size analysis and SEM confirmed an increase in soil colloid concentration after the flow interruption. XRD analysis of soil and the colloids proved that PFAS were associated with specific sites of the colloids. Due to a higher affinity of PFOA to soil colloids, the total PFOA concentration in the effluent samples increased more than PFBA after the flow interruption process. The results indicate that colloids may have a disproportionally higher role in the transport of PFAS in conditions that release colloids from porous media. Thus, fluctuations in groundwater flow can increase this colloid facilitated mobility of PFAS.Bisphenol A (BPA) is an endocrine disrupting chemical able to promote hormone-responsive tumors. The major route of BPA contamination being oral, the aim of the present study was to investigate BPA effects on oral cells. Here, we evaluated the impact of sub-chronic in vivo exposure to BPA and its in vitro effects on neoplastic and non-neoplastic oral cells. We evaluated the oral mucosa of mice chronically exposed to BPA (200 mg/L). The response of keratinocytes (NOK-SI) and Head and Neck (HN) Squamous Cell Carcinoma (SCC), HN12 and HN13 cell lines to BPA was examined. In vivo, BPA accumulated in oral tissues and caused an increase in epithelial proliferative activity. BPA disrupted the function of keratinocytes by altering pro-survival and proliferative pathways and the secretion of cytokines and growth factors. In tumor cells, BPA induced proliferative, invasive, pro-angiogenic, and epigenetic paths. Our data highlight the harmful effects of BPA on oral mucosa and, tumorigenic and non-tumorigenic cells. Additionally, BPA may be a modifier of oral cancer cell behavior by prompting a functional shift to a more aggressive phenotype.Benzophenone-type UV filters have been implicated in multiple adverse reproductive outcomes, yet the underlying processes and molecular targets on the female reproductive tract remain largely unknown. Herein, we investigated the effect of dioxybenzone, one of the widely used congeners, and its demethylated (M1) and hydroxylated (M2) metabolites on transcriptome profiles of ICR mice uterus and identified potential cellular targets in human endometrial stromal cells (HESCs) separated from normal endometrium tissues. Dioxybenzone, M1 and M2 (20 mg/kg bw/d) significantly induced transcriptome aberration with the induction of 683, 802, and 878 differentially expressed genes mainly involved in cancer, reproductive system disease and inflammatory disease. Compared to dioxybenzone, M1 and M2 exhibited a transcriptome profile more similar to estradiol in mice uterus, and subsequently promoted thicker endometrial columnar epithelial layer through upregulation of estrogen receptor target genes-Sprr2s. Dioxybenzone, M1 and M2 (0.1 or 1 μM) also exhibited estrogenic disrupting effect via increasing the mRNA expressions and production of the growth factors responsible for epithelial proliferation, including Fgfs and Igf-1 in HESCs. Additionally, the mRNA expressions of several inflammatory cytokines especially IL-1β in mice uterus and HESCs was significantly upregulated by dioxybenzone and its metabolites. Overall, we revealed that dioxybenzone and its metabolites triggered transcriptome perturbation dually associated with abnormal steroid hormone response and inflammation, both as key determinants to reproductive health risks.Biomass burning, a recurring global phenomenon is also considered an environmental menace, making headlines every year in India with onset of autumn months. Agriculture is demographically the broadest economic sector and plays a significant role in the overall socio-economic fabric of India. Hence, disposal of crop residue is done mainly by burning leading to deterioration of air quality. Residue burning in parts of India is blamed for changing air quality in nearby cities. The spatial distribution of these emissions has always been a challenge due to various data constraints. We hereby present a comprehensive spatially resolved seasonal high resolution gridded (∼10 km × ∼10 km) emission inventory of major pollutants from crop residue burning source in India for the latest year 2018. The winter months contributes almost around ∼50% of total emission followed by summer (∼48%), which is the prime cause of changing air quality in nearby cities. Among all the crops; rice, wheat, maize and sugarcane accounts ∼90% of total PM10 load in the country. The estimated emission for PM2.5, PM10, BC and OC, CO, NOx, SO2, VOC, CH4 and CO2 are found to 990.68 Gg/yr, 1231.26 Gg/yr, 123.33 Gg/yr, 410.99 Gg/yr, 11208.18 Gg/yr, 484.55 Gg/yr, 144.66 Gg/yr, 1282.95 Gg/yr, 785.56 Gg/yr and 262051.06 Gg/yr respectively. Grazoprevir mouse The cropping pattern and its role in different geographic regions are analysed to identify all potential emission hotspots regions scattered across the country. The developed gridded emissions inventory is envisaged to serve as an important input to regional atmospheric chemistry transport model to better quantify its contribution in deteriorating air quality in various regions of India, paving the way to policy makers to better plan the mitigation and control strategies. The developed fundamental tool is likely to be useful for air quality management.