Schroedermorris9014
4-1.8 times - an effect that was independent of N availability in the same rhizobox. Biochar stimulated activities of β-glucosidase and leucine aminopeptidase (by 33-39%) compared to N due to the coupling of C, N and P cycles in BC/N treated soil. Nitrogen fertilization also increased β-glucosidase activity compared to the unfertilized control, whereas root elongation remained unaffected. Thus, the combined application of BC/N had more efficient benefits for plant growth than BC or N alone. This is linked with i) the stimulation of enzyme activities at the BC locations to reduce N limitation for both microorganisms and plants, and ii) an increase of fine root production to improve N uptake efficiency. Thus, combined BC/N application is potentially especially sustainable to overcome nutrient limitation as well as to maintain crop productivity because it accelerates root-microbial interactions.A novel adsorbent of temperature sensitive urea-formaldehyde (TS-UF) resin was synthesized by base/acid two-step synthetic strategy with low formaldehyde/urea mole ratio of 0.8. The sorption kinetics of TS-UF resin obeys the pseudo-second-order model, and the adsorption is an endothermic process. The Langmuir model can well describe the sorption isotherms, through which the Qmax is calculated to be 99.2 mg/g for uranium (VI) at pH 6.0 and T = 298 K. The characterized results show that the functional groups -NH- and -CH2OH in TS-UF resin have been involved in uranium sorption via chemical interaction. The temperature sensitive property of TS-UF resin significantly accelerates the regeneration of TS-UF resin, which can be fast regenerated within 15 min at its low critical solution temperature 333 K and exhibits high removal efficiency of uranium (VI) (>90%) over 5 cycles. Therefore, TS-UF resin can be as a promising sorbent for the uranium (VI) removal from wastewater due to its low-cost, easy-fabrication, high-efficiency and fast regeneration. This work can not only boost the exploration of novel adsorbent materials, but also promote the investigations of the regeneration and reusability of adsorbents.Urban rivers and lakes, in combination with nearby green spaces, provide important habitat for urban birds, but few urban studies have focused on forest and water birds simultaneously along an urban intensity gradient. In this study, we randomly chose 39 rivers and lakes along an urban gradient of Beijing to examine bird community parameters in relation to aquatic and terrestrial habitat conditions, aquatic life data, and water quality data. We selected models with the AICc (corrected Akaike information criterion) method, bivariate linear or generalized linear regressions, and structural equation modeling to determine distribution patterns of avian communities along an urban gradient and bird-environment relationships. We found that both forest and water bird species and individuals peaked at intermediate urbanization intensities, especially for abundance of both forest and water bird and water bird species richness and abundance. We suggest that the differences in the strength of response to urbanization andat, which could provide practical applications for urban landscape planning and avian biodiversity conservation in urban areas.The drivers of global change, such as increasing drought and nutrient deposition, are affecting soils and their microbial communities in many different habitats, but how these factors interact remains unclear. Quercus ilex and Pinus sylvestris are two important tree species in Mediterranean montane areas that respond differently to drought, which may be associated with the soils in which they grow. We measured soil respiration and physiologically profiled microbial communities to test the impact of drought and subsequent recovery on soil function and diversity for these two species. We also tested whether the addition of nitrogen and phosphorus modified these effects. Drought was the stronger driver of changes to the soil communities, decreasing diversity (Shannon index), and evenness for both species and decreasing soil respiration for Q. ilex when N was added. Soil respiration for P. sylvestris during the drought period was positively affected by N addition but was not affected by water stress. ABBV2222 P addition during the drought period did not affect soil respiration for either tree species but did interact with soil-water content to affect community evenness for P. sylvestris. The two species also differed following the recovery from drought. Soil respiration for Q. ilex recovered fully after the drought treatment ended but decreased for P. sylvestris, whereas the soil community was more resilient for P. sylvestris than Q. ilex. Nutrient addition did not affect respiration or community composition or diversity during the recovery period. Soil respiration was generally weakly positively correlated with soil diversity. We demonstrate that short-term water stress and nutrient addition can have variable effects on the soil communities associated with different tree species and that the compositions of the communities can become uncoupled from soil respiration. Overall, we show that drought may be a stronger driver of changes to soil communities than nitrogen or phosphorus deposition.It is widely believed that infection with the SARS-CoV-2 virus triggers a disproportionate immune response which causes a devastating systemic injury, particularly in individuals with obesity, itself a chronic, multi-organ inflammatory disease. Immune cells accumulate in visceral adipose tissue and together with paracrine adipocytes release a wide range of biologically active cytokines (including IL-1β, IL5, IL6 and IL8) that can result in both local, pulmonary and systemic inflammation. A more intense 'cytokine storm' is postulated as the mechanism behind the extreme immune response seen in severe COVID-19. It is striking how dangerous the combination of obesity and COVID-19 is, resulting in a greater risk of ICU admission and a higher mortality. Furthermore, patients from a BAME background appear to have increased mortality after SARS-CoV-2 infection; they also have a higher prevalence of central obesity and its metabolic complications. In the absence of an effective vaccine, the therapeutic potential of immune-modulating drugs is a priority, but the development of new drugs is expensive and time-consuming.