Sumnerstewart0491
Rice (Oryza sativa L.) is a major cereal crop used for human nutrition worldwide. Harvesting and processing of rice generates huge amounts of lignocellulosic by-products such as rice husks and straw, which present important lignin contents that can be used to produce chemicals and materials. selleckchem In this work, the structural characteristics of the lignins from rice husks and straw have been studied in detail. For this, whole cell walls of rice husks and straw and their isolated lignin preparations were thoroughly analyzed by an array of analytical techniques, including pyrolysis coupled to gas chromatography-mass spectrometry (Py-GC/MS), nuclear magnetic resonance (NMR), and derivatization followed by reductive cleavage (DFRC). The analyses revealed that both lignins, particularly the lignin from rice husks, were highly enriched in guaiacyl (G) units, and depleted in p-hydroxyphenyl (H) and syringyl (S) units, with HGS compositions of 78112 (for rice husks) and 57124 (for rice straw). These compositions were reflected in the relative abundances of the different interunit linkages. Hence, the lignin from rice husks were depleted in β-O-4' alkyl-aryl ether units (representing 65% of all inter-unit linkages), but presented important amounts of β-5' (phenylcoumarans, 23%) and other condensed units. On the other hand, the lignin from rice straw presented higher levels of β-O-4' alkyl-aryl ethers (78%) but lower levels of phenylcoumarans (β-5', 12%) and other condensed linkages, consistent with a lignin with a slightly higher S/G ratio. In addition, both lignins were partially acylated at the γ-OH of the side-chain (ca. 10-12% acylation degree) with p-coumarates, which overwhelmingly occurred over S-units. Finally, important amounts of the flavone tricin were also found incorporated into these lignins, being particularly abundant in the lignin of rice straw.Blanching is a technique used in blocking sunlight for the production of tender, sweet, and delicious stems in the field. This technique is also used in water dropwort (Oenanthe javanica), an important vegetable in East Asia. In China, the steamed stems of water dropwort are prepared with boiled rice. However, the effect of blanching on the nutritional level and antioxidant capacity of water dropwort has not been explored yet. The current study aims to determine the nutrient contents and antioxidant capacities of five cultivars and select the best cultivar. They were mainly compared in terms of phenotypic, physiological, nutritional, and antioxidant levels after blanch cultivation. Results indicate that blanching significantly influenced the phenotype, physiology, and nutritional level of water dropwort in all cultivars. Although few parameters decreased with blanching, starch, sugars, vitamins, minerals, and antioxidant activities increased significantly in the blanched stems in mid- and post-blanching periods. The most noticeable changes were detected in post-blanching samples. Furthermore, the best cultivar (V11E0012) was identified among them. Therefore, blanched water dropwort could be consumed for achieving more nutraceuticals and antioxidants, and cultivar V11E0012 could be recommend for blanching cultivation.Rice, a staple crop for nearly half the planet's population, tends to absorb and accumulate excessive cadmium (Cd) when grown in Cd-contaminated fields. Low levels of Cd can degrade the quality of rice grains, while high levels can inhibit the growth of rice plants. There is genotypic diversity in Cd distribution and Cd tolerance in different rice varieties, but their underlying genetic mechanisms are far from elucidated, which hinders genetic improvements. In this study, a joint study of phenotypic investigation with quantitative trait loci (QTLs) analyses of genetic patterns of Cd distribution and Cd tolerance was performed using a biparent population derived from japonica and indica rice varieties. We identified multiple QTLs for each trait and revealed that additive effects from various loci drive the inheritance of Cd distribution, while epistatic effects between various loci contribute to differences in Cd tolerance. One pleiotropic locus, qCddis8, was found to affect the Cd distribution from both roots to shoots and from leaf sheaths to leaf blades. The results expand our understanding of the diversity of genetic control over Cd distribution and Cd tolerance in rice. The findings provide information on potential QTLs for genetic improvement of Cd distribution in rice varieties.Sugarcane (Saccharum spp.), a C4 grass, has a peculiar feature it accumulates, gradient-wise, large amounts of carbon (C) as sucrose in its culms through a complex pathway. Apart from being a sustainable crop concerning C efficiency and bioenergetic yield per hectare, sugarcane is used as feedstock for producing ethanol, sugar, high-value compounds, and products (e.g., polymers and succinate), and bioelectricity, earning the title of the world's leading biomass crop. Commercial cultivars, hybrids bearing high levels of polyploidy, and aneuploidy, are selected from a large number of crosses among suitable parental genotypes followed by the cloning of superior individuals among the progeny. Traditionally, these classical breeding strategies have been favoring the selection of cultivars with high sucrose content and resistance to environmental stresses. A current paradigm change in sugarcane breeding programs aims to alter the balance of C partitioning as a means to provide more plasticity in the sustainable use of this biomass for metabolic engineering and green chemistry. The recently available sugarcane genetic assemblies powered by data science provide exciting perspectives to increase biomass, as the current sugarcane yield is roughly 20% of its predicted potential. Nowadays, several molecular phenotyping tools can be applied to meet the predicted sugarcane C potential, mainly targeting two competing pathways sucrose production/storage and biomass accumulation. Here we discuss how molecular phenotyping can be a powerful tool to assist breeding programs and which strategies could be adopted depending on the desired final products. We also tackle the advances in genetic markers and mapping as well as how functional genomics and genetic transformation might be able to improve yield and saccharification rates. Finally, we review how "omics" advances are promising to speed up plant breeding and reach the unexplored potential of sugarcane in terms of sucrose and biomass production.