Svanehedegaard0740
Astragalus polysaccharide (APS) was modified using the Na2SeO3/HNO3 method to obtain selenized APS (Se-APS) with a selenium content of 1.75 mg/g. The structure and physicochemical properties of APS and Se-APS were investigated through transmission electron microscopy-energy dispersive spectroscopy mapping, fourier transform infrared spectroscopy, nuclear magnetic resonance, nano-zetasizer analysis, atomic force microscopy, and scanning electron microscopy. APS and Se-APS did not exhibit toxic effects on human kidney proximal tubular epithelial (HK-2) cells and were able to remove hydroxyl and DPPH radicals, alleviate the damage caused by calcium oxalate (CaOx) monohydrate (COM) crystals to HK-2 cells, reduce intracellular reactive oxygen species levels, and restore cell viability and morphology. Both APS and Se-APS could inhibit COM growth, induce calcium oxalate dihydrate formation, and increase the absolute zeta potential of the crystals to inhibit crystal aggregation. However, the ability of Se-APS to regulate CaOx crystals and protect the cells from COM-induced damage was better than that of APS. These results suggested that Se-APS might be a candidate drug for the treatment and prevention of kidney stones. Facilitating the process of wound healing and effective treatment of wounds remains a serious challenge in healthcare. Wound dressing materials play a major role in the protection of wounds and in accelerating the natural healing process. In the present study, novel core/shell (c/s) nanofibrous mats of poly(vinyl pyrrolidone)‑iodine (PVPI) and polycaprolactone (PCL) were fabricated using a co-axial electrospinning process followed by their surface modification with poly-l-lysine. The developed nanofibrous mats were extensively characterized for their physicochemical properties using various analytical techniques. The core/shell structure of the PVP-I/PCL nanofibers was confirmed using TEM analysis. The PVP-I release studies showed an initial burst phase followed by a sustained release pattern of PVP-I over a period of 30 days. The developed nanofibers exhibited higher BSA and fibrinogen adsorption as compared to pristine PCL. Cytotoxicity studies using MTT assay demonstrated that the PVP-I/PCL (c/s) nanofibers. The first part of the paper provides a comprehensive analysis of the features of electron beam formation of polymer coatings with the prolonged release of the drug compound using ciprofloxacin and clotrimazole as an example. The influence features of the low-energy electron beam on the molecular structure of medicinal chemical preparations have been established. The impossibility of producing the coatings based on medicinal compounds with a complex molecular structure (vancomycin, micafungin, etc.) by a low-energy electron beam has been justified. The second part of the paper introduces a fundamentally new vacuum method for the formation of the composite coatings based on antibiotics and antifungal drugs, accompanied by the prolonged release of the drug component. This method allows the formation of composite coatings based on medicinal compounds with a complex molecular structure. It is effective for modifying implants to prevent the risk of implant-associated infectious complications which are the result of the occurrence of mixed biofilms. The method can be used to form composite layers based on topical antitumor drugs for cancer control. Calcium silicate cement has attracted much attention for bone defect repair and regeneration due to its osteogenic properties. selleckchem Biomaterial-associated infections and washout have become a common clinical problem. In order to enhance the antibacterial and washout performance of calcium silicate cement to meet clinical needs, different types of chitosan, including chitosan polysaccharide (CTS), quaternary ammonium chitosan (QTS), and chitosan oligosaccharide (COS), as a liquid phase were added to the calcium silicate powder. The physicochemical properties, in vitro bioactivity, antibacterial efficacy, and osteogenic effects (MG63 cells) of the cement were evaluated. Antibacterial activity was conducted with Gram-negative Escherichia coli (E. coli) and a Gram-positive Staphylococcus aureus (S. aureus) bacteria. The amount of intracellular reactive oxygen species (ROS) produced in the bacteria cultured with the chitosan solution was also detected. The experimental results showed that the chitosan additive did not affect the crystalline phase of calcium silicate cement, but increased the setting time and strength of the cement in a concentration-dependent manner. Within the scope of this study, CTS and QTS solutions with a concentration of not COS at the same 1% concentration. In conclusion, calcium silicate cement with 1% QTS may be a viable candidate for bone defect repair in view of anti-washout performance, setting time, antibacterial activity, and osteogenic activity shown in this study. Surface mechanical attrition treatment (SMAT) is recognized as a surface severe plastic deformation (SPD) method that is effective in improving the surface-dependent mechanical and functional properties of conventional metallic biomaterials. In this study, we aimed to systemically investigate the effect of SMAT on the physical, electrochemical, tribological and biological performances of a newly developed low modulus β Ti-Nb-Ta-O alloy with two different microstructures, namely, single phase β-treated and dual phase β + α aged. The microhardness results showed considerable hardening for the β-treated condition due to formation of deformation substructures; that was associated with increased corrosion resistance resulting from a stronger and denser passive layer on the surface, as revealed by Tafel polarization, impedance studies and Mott-Scottky plots. The wear volume loss during fretting in serum solution was found to decrease by 46% while friction coefficient decreased only marginally, due to presence of a harder and more brittle surface. In the β + α condition of the alloy, minimal hardening was observed due to coarsening of the precipitates during SMAT. However, this also reduced the number of α-β interfaces, which in turn minimized the tendency for galvanic corrosion resulting in lower corrosion rate after SMAT. Wear resistance was enhanced after SMAT, with 32% decrease in wear volume loss and 21% decrease in friction coefficient resulted due to improved ductility on the surface. The attachment and growth of osteoblasts on the alloys in vitro were not affected by SMAT and was comparable to that on commercially pure Ti. Taken together, these results provide new insights into the effects of surface SPD of low modulus β- Ti alloys for orthopedic applications and underscore the importance of the initial microstructure in determining the performance of the alloy.