Brinchamstrup1127

Z Iurium Wiki

Verze z 25. 12. 2024, 00:48, kterou vytvořil Brinchamstrup1127 (diskuse | příspěvky) (Založena nová stránka s textem „In contrast, in mature fruit, M. laxa was more dependent on proteolytic effectors than CAZymes, and was able to invest in filamentous growth early during t…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

In contrast, in mature fruit, M. laxa was more dependent on proteolytic effectors than CAZymes, and was able to invest in filamentous growth early during the interaction. MK-0752 Hormone analyses of mature fruit infected with M. laxa indicated that, while jasmonic acid activity was likely useful for defense, high ethylene activity may have promoted susceptibility through the induction of ripening processes. Lastly, we identified M. laxa genes that were highly induced in both quiescent and active infections and may serve as targets for control of brown rot.Flooding tolerance is an important trait for tomato breeding. In this study, we obtained a recessive mutant exhibiting highly enhanced submergence resistance. Phenotypical analyses showed that this resistant to flooding (rf) mutant displays slightly chlorotic leaves and spontaneous initiation of adventitious roots (ARs) on stems. The mutation was mapped to the phytochromobilin synthase gene AUREA (AU), in which a single amino acid substitution from asparagine to tyrosine occurred. In addition to the classic function of AU in phytochrome and chlorophyll biogenesis in leaves, we uncovered its novel role in mediating AR formation on stems. We further observed temporal coincidence of the two phenotypes in the rf mutant chlorosis and spontaneous AR formation and revealed that AU functions by maintaining heme homeostasis. Interestingly, our grafting results suggest that heme might play roles in AR initiation via long-distance transport from leaves to stems. Our results present genetic evidence for the involvement of the AU-heme oxygenase-1-heme pathway in AR initiation in tomato. As fruit production and yield in the rf mutant are minimally impacted, the mutation identified in this study may provide a target for biotechnological renovation of tomato germplasm in future breeding.Cerasus serrulata is a flowering cherry germplasm resource for ornamental purposes. In this work, we present a de novo chromosome-scale genome assembly of C. serrulata by the use of Nanopore and Hi-C sequencing technologies. The assembled C. serrulata genome is 265.40 Mb across 304 contigs and 67 scaffolds, with a contig N50 of 1.56 Mb and a scaffold N50 of 31.12 Mb. It contains 29,094 coding genes, 27,611 (94.90%) of which are annotated in at least one functional database. Synteny analysis indicated that C. serrulata and C. avium have 333 syntenic blocks composed of 14,072 genes. Blocks on chromosome 01 of C. serrulata are distributed on all chromosomes of C. avium, implying that chromosome 01 is the most ancient or active of the chromosomes. The comparative genomic analysis confirmed that C. serrulata has 740 expanded gene families, 1031 contracted gene families, and 228 rapidly evolving gene families. By the use of 656 single-copy orthologs, a phylogenetic tree composed of 10 species was constructed. The present C. serrulata species diverged from Prunus yedoensis ~17.34 million years ago (Mya), while the divergence of C. serrulata and C. avium was estimated to have occurred ∼21.44 Mya. In addition, a total of 148 MADS-box family gene members were identified in C. serrulata, accompanying the loss of the AGL32 subfamily and the expansion of the SVP subfamily. The MYB and WRKY gene families comprising 372 and 66 genes could be divided into seven and eight subfamilies in C. serrulata, respectively, based on clustering analysis. Nine hundred forty-one plant disease-resistance genes (R-genes) were detected by searching C. serrulata within the PRGdb. This research provides high-quality genomic information about C. serrulata as well as insights into the evolutionary history of Cerasus species.The essential role of ethylene in fruit ripening has been thoroughly studied. However, the involvement of brassinosteroids (BRs) in the regulation of fruit ripening and their relationship with the ethylene pathway are poorly understood. In the current study, we found that BRs were actively synthesized during tomato fruit ripening. We then generated transgenic lines overexpressing or silencing SlCYP90B3, which encodes a cytochrome P450 monooxygenase that catalyzes the rate-limiting step of BR synthesis. The expression level of SlCYP90B3 was positively related to the contents of bioactive BRs as well as the ripening process in tomato fruit, including enhanced softening and increased soluble sugar and flavor volatile contents. Both carotenoid accumulation and ethylene production were strongly correlated with the expression level of SlCYP90B3, corroborated by the altered expression of carotenoid biosynthetic genes as well as ethylene pathway genes in transgenic tomato fruits. However, the application of the ethylene perception inhibitor 1-methycyclopropene (1-MCP) abolished the promotion effect of SlCYP90B3 overexpression on carotenoid accumulation. Taken together, these results increase our understanding of the involvement of SlCYP90B3 in bioactive BR biosynthesis as well as fruit ripening in tomato, thus making SlCYP90B3 a target gene for improvement of visual, nutritional and flavor qualities of tomato fruits with no yield penalty.Plant biosynthesis involves numerous specialized metabolites with diverse chemical natures and biological activities. The biosynthesis of metabolites often exclusively occurs in response to tissue-specific combinatorial developmental cues that are controlled at the transcriptional level. Capsaicinoids are a group of specialized metabolites that confer a pungent flavor to pepper fruits. Capsaicinoid biosynthesis occurs in the fruit placenta and combines its developmental cues. Although the capsaicinoid biosynthetic pathway has been largely characterized, the regulatory mechanisms that control capsaicinoid metabolism have not been fully elucidated. In this study, we combined fruit placenta transcriptome data with weighted gene coexpression network analysis (WGCNA) to generate coexpression networks. A capsaicinoid-related gene module was identified in which the MYB transcription factor CaMYB48 plays a critical role in regulating capsaicinoid in pepper. Capsaicinoid biosynthetic gene (CBG) and CaMYB48 expression primarily occurs in the placenta and is consistent with capsaicinoid biosynthesis.

Autoři článku: Brinchamstrup1127 (McKenna Sutton)