Dueholmherbert8643
The slow decrease in child stunting rates in East Africa warrants further research to identify the influence of contributing factors such as water, sanitation, and hygiene (WASH). This study investigated the association between child length and WASH conditions using the recently revised WHO and UNICEF (United Nations Children's Fund) Joint Monitoring Programme (JMP) indicators. Data from households with infants and young children aged 6-23 months from the Demographic and Health Surveys in Burundi, Ethiopia, Kenya, Malawi, Rwanda, Tanzania, Uganda, and Zambia were used. selleck products Associations for each country between WASH conditions and length-for-age z-scores (LAZ) were analyzed using linear regression. Stunting rates were high (>20%) reaching 45% in Burundi. At the time of the most recent Demographic and Health Survey (DHS), more than half of the households in most countries did not have basic or safely managed WASH indicators. Models predicted significantly higher LAZ for children living in households with safely managed drinking water compared to those living in households drinking from surface water in Kenya (β = 0.13, p less then 0.01) and Tanzania (β = 0.08, p less then 0.05) after adjustment with child, maternal, and household covariates. Children living in households with improved sanitation facilities not shared with other households were also taller than children living in households practicing open defecation in Ethiopia (β = 0.07, p less then 0.01) and Tanzania (β = 0.08, p less then 0.01) in the adjusted models. All countries need improved WASH conditions to reduce pathogen and helminth contamination. Targeting adherence to the highest JMP indicators would support efforts to reduce child stunting in East Africa.This article explores the effect of the synthetic method of titanium dioxide (TiO2)/C composites (physical mixture and the water-assisted/unassisted sol-gel method) on their photocatalytic activity for hydrogen production through glycerol photoreforming. The article demonstrates that, apart from a high surface area of carbon and the previous activation of its surface to favor titania incorporation, the appropriate control of titania formation is crucial. In this sense, even though the amount of incorporated titania was limited by the saturation of carbon surface groups (in our case, ca. 10 wt.% TiO2), the sol-gel process without water addition seemed to be the best method, ensuring the formation of small homogeneously-distributed anatase crystals on mesoporous carbon. In this way, a ca. 110-fold increase in catalyst activity compared to Evonik P25 (expressed as hydrogen micromole per grams of titania) was achieved.Medical genomics relies on next-gen sequencing methods to decipher underlying molecular mechanisms of gene expression. This special issue collects materials originally presented at the "Centenary of Human Population Genetics" Conference-2019, in Moscow. Here we present some recent developments in computational methods tested on actual medical genetics problems dissected through genomics, transcriptomics and proteomics data analysis, gene networks, protein-protein interactions and biomedical literature mining. We have selected materials based on systems biology approaches, database mining. These methods and algorithms were discussed at the Digital Medical Forum-2019, organized by I.M. Sechenov First Moscow State Medical University presenting bioinformatics approaches for the drug targets discovery in cancer, its computational support, and digitalization of medical research, as well as at "Systems Biology and Bioinformatics"-2019 (SBB-2019) Young Scientists School in Novosibirsk, Russia. Selected recent advancements discussed at these events in the medical genomics and genetics areas are based on novel bioinformatics tools.Renal cancer ranks twelfth in incidence among cancers worldwide. Despite improving outcomes due to better therapeutic options and strategies, prognosis for those with metastatic disease remains poor. Current systemic therapeutic approaches include inhibiting pathways of angiogenesis, immune checkpoint blockade, and mTOR inhibition, but inevitably resistance develops for those with metastatic disease, and novel treatment strategies are urgently needed. Emerging molecular and epidemiological evidence suggests that quinazoline-based α1-adrenoceptor-antagonists may have both chemopreventive and direct therapeutic actions in the treatment of urological cancers, including renal cancer. In human renal cancer cell models, quinazoline-based α1-adrenoceptor antagonists were shown to significantly reduce the invasion and metastatic potential of renal tumors by targeting focal adhesion survival signaling to induce anoikis. Mechanistically these drugs overcome anoikis resistance in tumor cells by targeting cell survival regulators AKT and FAK, disrupting integrin adhesion (α5β1 and α2β1) and engaging extracellular matrix (ECM)-associated tumor suppressors. In this review, we discuss the current evidence for the use of quinazoline-based α1-adrenoceptor antagonists as novel therapies for renal cell carcinoma (RCC) and highlight their potential therapeutic action through overcoming anoikis resistance of tumor epithelial and endothelial cells in metastatic RCC. These findings provide a platform for future studies that will retrospectively and prospectively test repurposing of quinazoline-based α1-adrenoceptor-antagonists for the treatment of advanced RCC and the prevention of metastasis in neoadjuvant, adjuvant, salvage and metastatic settings.This paper presents a frequency-modulated optical signal generator in the THz band. The proposed method is based on a fast optical frequency sweep of a single narrowband laser diode used together with an optical fiber interferometer. The optical frequency sweep using a single laser diode is achieved by generating short current pulses with a high amplitude, which are driving the laser diode. Theoretical analysis showed that the modulation frequency could be changed by the optical path difference of the interferometer or optical frequency sweep rate of a laser diode. The efficiency of the optical signal generator with Michelson and Fabry-Perot interferometers is theoretically analyzed and experimentally evaluated for three different scenarios. Interferometers with different optical path differences and a fixed optical frequency sweep rate were used in the first scenario. Different optical frequency sweep rates and fixed optical path differences of the interferometers were used in the second scenario. This paper presents a method for optical chirp generation using a programmable current pulse waveform, which drives a laser diode to achieve nonlinear optical sweep with a fixed optical path difference of the interferometer.