Soelbergjensby9048

Z Iurium Wiki

Verze z 25. 12. 2024, 00:31, kterou vytvořil Soelbergjensby9048 (diskuse | příspěvky) (Založena nová stránka s textem „AbstractCollective behaviors are widespread in nature and usually assumed to be strongly shaped by natural selection. However, the degree to which variatio…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

AbstractCollective behaviors are widespread in nature and usually assumed to be strongly shaped by natural selection. However, the degree to which variation in collective behavior is heritable and has fitness consequences-the two prerequisites for evolution by natural selection-is largely unknown. We used a new pharaoh ant (Monomorium pharaonis) mapping population to estimate the heritability, genetic correlations, and fitness consequences of three collective behaviors (foraging, aggression, and exploration), as well as of body size, sex ratio, and caste ratio. Heritability estimates for the collective behaviors were moderate, ranging from 0.17 to 0.32, but lower than our estimates for the heritability of caste ratio, sex ratio, and body size of new workers, queens, and males. Moreover, variation in collective behaviors among colonies was phenotypically correlated, suggesting that selection may shape multiple colony collective behaviors simultaneously. Finally, we found evidence for directional selection that was similar in strength to estimates of selection in natural populations. Altogether, our study begins to elucidate the genetic architecture of collective behavior and is one of the first studies to demonstrate that it is shaped by selection.AbstractEarly-life conditions may have long-lasting effects on life history. In color polymorphic species, morph-specific sensitivity to environmental conditions may lead to differential fitness. In tawny owls (Strix aluco), pheomelanin-based color polymorphism is expected to be maintained because the brown morph has higher adult fitness in warmer environments, while selection favors the gray morph under colder conditions. Here we investigate body mass at fledging and its consequences until adulthood in a population at the species' cold range margin. Using 40 years of data (1979-2017), we show that brown pairs, which mainly produce brown offspring consistent with a one-locus-two-alleles inheritance model, consistently raised heavier offspring than mixed (gray-brown) pairs and gray pairs. Offspring mass declined seasonally, except among offspring raised by brown pairs. Brown offspring could be heavier because of morph-specific parental care and/or offspring growth. Furthermore, mass at fledging is associated with fitness the probability of local recruitment into the breeding population increased with higher mass at fledging, especially in mild winters and with favorable food conditions, although recruitment is not morph specific. Fledgling mass thus provides a fitness benefit in terms of recruitment probability that is modulated by environmental factors, which appear to level off any direct morph-specific recruitment benefits.AbstractThe nests built by social insects are complex group-level structures that emerge from interactions among individuals following simple behavioral rules. Nest patterns vary among species, and the theory of complex systems predicts that there is no simple one-to-one relationship between variation in collective patterns and variation in individual behaviors. Therefore, a species-by-species comparison of the actual building process is essential to understand the mechanism producing diverse nest patterns. Here, we compare tunnel formation of three termite sp ecies and reveal two mechanisms producing interspecific variation in one, a common behavioral rule yields distinct patterns via parameter tuning, and in the other, distinct rules produce similar patterns. We found that two related species transport sand in the same way using mandibles but build tunnels with different degrees of branching. The variation arises from different probabilities of choosing between two behavioral options at crowded tunnel faces excavating the sidewall to make a new branch or waiting for clearance to extend the current tunnel. We further discovered that a third species independently evolved low-branched patterns using different building rules, namely, a bucket brigade that can excavate a crowded tunnel. Our findings emphasize the importance of direct comparative study of collective behaviors at both individual and group levels.AbstractA goal of ecology is to identify the stabilizing mechanisms that maintain species diversity in the face of competitive exclusion and drift. For tropical forest tree communities, it has been hypothesized that high diversity is maintained via Janzen-Connell effects, whereby host-specific natural enemies prevent any one species from becoming too abundant. Here we explore the plausibility of this hypothesis with theoretical models. https://www.selleckchem.com/products/roc-325.html We confirm a previous result that when added to a model with drift but no competitive exclusion-that is, a neutral model where intrinsic fitnesses are perfectly equalized across species-Janzen-Connell effects maintain very high species richness that scales strongly with community size. However, when competitive exclusion is introduced-that is, when intrinsic fitnesses vary across species-the number of species maintained by Janzen-Connell effects is substantially reduced and scales much less strongly with community size. Because fitness variation is pervasive in nature, we conclude that the potential of Janzen-Connell effects to maintain diversity is probably weak and that the mechanism does not yet provide a sufficient explanation for the observed high diversity of tropical forest tree communities. We also show that, surprisingly, dispersal limitation can further reduce the ability of Janzen-Connell effects to maintain diversity.AbstractPhenological traits, such as the timing of reproduction, are often influenced by social interactions between paired individuals. Such partner effects may occur when pair members affect each other's prebreeding environment. Partner effects can be environmentally and/or genetically determined, and quantifying direct and indirect genetic effects is important for understanding the evolutionary dynamics of phenological traits. Here, using 26 years of data from a pedigreed population of a migratory seabird, the common tern (Sterna hirundo), we investigate male and female effects on female laying date. We find that female laying date harbors both genetic and environmental variation and is additionally influenced by the environmental and, to a lesser extent, genetic component of its mate. We demonstrate this partner effect to be largely explained by male arrival date. Interestingly, analyses of mating patterns with respect to arrival date show mating to be strongly assortative, and using simulations we show that assortative mating leads to overestimation of partner effects.

Autoři článku: Soelbergjensby9048 (Wilkins Morris)