Larkinmckay1789

Z Iurium Wiki

Verze z 25. 12. 2024, 00:02, kterou vytvořil Larkinmckay1789 (diskuse | příspěvky) (Založena nová stránka s textem „Several studies suggested that gold nanoparticles (NPs) could be genotoxic in vitro and in vivo. However, gold NPs currently produced present a wide range…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Several studies suggested that gold nanoparticles (NPs) could be genotoxic in vitro and in vivo. However, gold NPs currently produced present a wide range of sizes and functionalization, which could affect their interactions with the environment or with biological structures and, thus, modify their toxic effects. In this study, we investigated the role of surface charge in determining the genotoxic potential of gold NPs, as measured by the induction of DNA damage (comet assay) and chromosomal damage (micronucleus assay) in human bronchial epithelial BEAS-2B cells. The cellular uptake of gold NPs was assessed by hyperspectral imaging. Two core sizes (~5 nm and ~20 nm) and three functionalizations representing negative (carboxylate), positive (ammonium), and neutral (poly(ethylene glycol) (PEG)ylated) surface charges were examined. Cationic ammonium gold NPs were clearly more cytotoxic than their anionic and neutral counterparts, but genotoxicity was not simply dependent on functionalization or size, since DNA damage was induced by 20-nm ammonium and PEGylated gold NPs, while micronucleus induction was increased by 5-nm ammonium and 20-nm PEGylated gold NPs. The 5-nm carboxylated gold NPs were not genotoxic, and evidence on the genotoxicity of the 20-nm carboxylated gold NPs was restricted to a positive result at the lowest dose in the micronucleus assay. When interpreting the results, it has to be taken into account that cytotoxicity limited the doses available for the ammonium-functionalized gold NPs and that gold NPs were earlier described to interfere with the comet assay procedure, possibly resulting in a false positive result. In conclusion, our findings show that the cellular uptake and cytotoxicity of gold NPs are clearly enhanced by positive surface charge, but neither functionalization nor size can single-handedly account for the genotoxic effects of the gold NPs.The study describes the finding of an abnormal blue-tinged color found on rabbit carcasses in the refrigeration cell of two butcher shops in Apulia Region. The carcasses were from an industrial rabbitry for production of meat with a regularly authorized slaughterhouse. Pseudomonas azotoformans, a microorganism included in Pseudomonas fluorescens group, was isolated from samples collected by the altered carcasses, showing the growth of uniform bacterial colonies with fluorescent pigmentation. selleck inhibitor The bacterium was also isolated from an additional water sample and from the labelling gun collected in the slaughterhouse, whilst the knives used for slaughtering resulted negative. Chromatic alteration was experimentally reproduced on new carcasses using a 108 cfu/mL bacterial suspension prepared with the isolated strain. Due to their resistance characteristics, members of P. fluorescens group are very difficult to eradicate once introduced into the production environment. Therefore, their presence, even if not considered a public health problem, should be monitored by food industry operators in self-control plans.One of the special issues in Nutrients in 2020 focuses on the nutritional therapy for diabetes mellitus [...].Todays, nano-pharmaceutics is emerging as an important field of science to develop and improve efficacy of different drugs. Although nutraceuticals are currently being utilized in the prevention and treatment of various chronic diseases such as cancers, a number of them have displayed issues associated with their solubility, bioavailability, and bio-degradability. In the present review, we focus on curcumin, an important and widely used polyphenol, with diverse pharmacological activities such as anti-inflammatory, anti-carcinogenic, anti-viral, etc. Notwithstanding, it also exhibits poor solubility and bioavailability that may compromise its clinical application to a great extent. Therefore, the manipulation and encapsulation of curcumin into a nanocarrier formulation can overcome these major drawbacks and potentially may lead to a far superior therapeutic efficacy. Among different types of nanocarriers, biological and biopolymer carriers have attracted a significant attention due to their pleiotropic features. Thus, in the present review, the potential protective and therapeutic applications of curcumin, as well as different types of bio-nanocarriers, which can be used to deliver curcumin effectively to the different target sites will be discussed.The exodermis is a common apoplastic barrier of the outer root cortex, with high environmentally-driven plasticity and a protective function. This study focused on the trade-off between the protective advantages provided by the exodermis and its disadvantageous reduction of cortical membrane surface area accessible by apoplastic route, thus limiting nutrient acquisition from the rhizosphere. We analysed the effect of nutrient deficiency (N, P, K, Mg, Ca, K, Fe) on exodermal and endodermal differentiation in maize. To differentiate systemic and localized effects, nutrient deficiencies were applied in three different approaches to the root system as a whole, locally to discrete parts, or on one side of a single root. Our study showed that the establishment of the exodermis was enhanced in low-N and low-P plants, but delayed in low-K plants. The split-root cultivation proved that the effect is non-systemic, but locally coordinated for individual roots. Within a single root, localized deficiencies didn't result in an evenly differentiated exodermis, in contrast to other stress factors. The maturation of the endodermis responded in a similar way. In conclusion, N, P, and K deficiencies strongly modulated exodermal differentiation. The response was nutrient specific and integrated local signals of current nutrient availability from the rhizosphere.The microtubule-associated protein TPX2 is a key mitotic regulator that contributes through distinct pathways to spindle assembly. A well-characterised function of TPX2 is the activation, stabilisation and spindle localisation of the Aurora-A kinase. High levels of TPX2 are reported in tumours and the effects of its overexpression have been investigated in cancer cell lines, while little is known in non-transformed cells. Here we studied TPX2 overexpression in hTERT RPE-1 cells, using either the full length TPX2 or a truncated form unable to bind Aurora-A, to identify effects that are dependent-or independent-on its interaction with the kinase. We observe significant defects in mitotic spindle assembly and progression through mitosis that are more severe when overexpressed TPX2 is able to interact with Aurora-A. Furthermore, we describe a peculiar, and Aurora-A-interaction-independent, phenotype in telophase cells, with aberrantly stable microtubules interfering with nuclear reconstitution and the assembly of a continuous lamin B1 network, resulting in daughter cells displaying doughnut-shaped nuclei.

Autoři článku: Larkinmckay1789 (Velez Adler)