Alexandersenrohde1855
Therefore, the [HO•]ss could be obtained by the competitive kinetic equation of BA when HO• existed alone. When HO• coexisted with SO4•-, a two-step method combining scavenging assay and competitive kinetics was proposed to measure [SO4•-]ss and [HO•]ss, in which tert-butyl alcohol and BA were added as scavenger and competitor, respectively. Furthermore, the reliability of each approach was verified by the experimental results and kinetic analysis.
Polycyclic aromatic hydrocarbons (PAHs) are the risk factors for workers' neurological performance, which were widely exist in the occupational environment.
We aimed to investigate the dose-response relationship between various PAH metabolites and workers' neurobehavioral changes and to explore whether mitochondrial DNA copy number (mtDNAcn) can be used as a potential biomarker to reflect changes in neurobehavioral behavior.
A total of 697 workers were recruited from a coke oven plant. The concentrations of eleven PAHs metabolites were determined by HPLC-MS/MS. Peripheral blood mtDNAcn was measured using QPCR. Neurobehavioral function was measured by NCTB questionnaire. The dose-response relationships were evaluated using restricted cubic spline models. Mediation analysis was also carried out.
We found dose-response relationships between urinary 2-hydroxynaphthalene (2-OH Nap), sum of PAH metabolites (Ʃ -OH PAHs) and total digit span (DSP), backward digit span (DSPB), forward digit span (DSPF) and mtDNAcn. Each one-unit increase in ln-transformed of 2-OH Nap or Ʃ -OH PAHs was associated with a 2.64 or 3.22 decrease in DSP, a 1.20 or 1.58 decrease in DSPF, a 1.44 or 1.62 decrease in DSPB and a 0.13 or 0.12 decrease in mtDNAcn. However, we did not find a significant mediation effect of mtDNAcn between PAHs metabolites and DSP, DSPF, or DSPB.
Our data indicated that workers urinary 2-hydroxynaphthalene and sum of PAH metabolites levels were inversely associated with mtDNAcn and neurobehavior, especially their auditory memory. However, there was no significant mediation effect of mtDNAcn between urinary PAHs metabolites and neurobehavior.
Our data indicated that workers urinary 2-hydroxynaphthalene and sum of PAH metabolites levels were inversely associated with mtDNAcn and neurobehavior, especially their auditory memory. However, there was no significant mediation effect of mtDNAcn between urinary PAHs metabolites and neurobehavior.As cobalt (Co) represents an effective transition metal for activating Oxone to degrade contaminants, tricobalt tetraoxide (Co3O4) is extensively employed as a heterogeneous phase of Co for Oxone activation. Since Co3O4 can be manipulated to exhibit various shapes, 2-dimensional plate-like morphology of Co3O4 can offer large contact surfaces. If the large plate-like surfaces can be even porous, forming porous nanoplate Co3O4 (PNC), such a PNC should be a promising catalyst for Oxone activation. Therefore, a facile but straightforward method is proposed to prepare such a PNC for activating Oxone to degrade pollutants. In particular, a cobaltic coordination polymer with a morphology of hexagonal nanoplate, which is synthesized through coordination between Co2+ and thiocyanuric acid (TCA), is adopted as a precursor. Through calcination, CoTCA could be transformed into hexagonal nanoplate-like Co3O4 with pores to become PNC. This PNC also shows different characteristics from the commercial Co3O4 nanoparticle (NP) in terms of surficial reactivity and textural properties. Thus, PNC exhibits a much higher catalytic activity than the commercial Co3O4 NP towards activation of Oxone to degrade a model contaminant, salicylic acid (SA). Specifically, SA was 100% degraded by PNC activating Oxone within 120 min, and the Ea of SA degradation by PNC-activated Oxone is 70.2 kJ/mol. PNC can also remain stable and effective for SA degradation even in the presence of other anions, and PNC could be reused over multiple cycles without significant loss of catalytic activity. These features validate that PNC is a promising and useful Co-based catalyst for Oxone activation.Environmental pollution has intensified and accelerated due to a steady increase in the number of industries, and finding methods to remove hazardous contaminants, which can be typically divided into inorganic and organic compounds, have become inevitable. One of the widely used water treatment technologies is adsorption and various kinds of adsorbents for the removal of inorganic and organic contaminants from water have been discovered. Recently, MXene, as an emerging nanomaterial, has gained rapid attention owing to its unique characteristics and various applicability. Particularly, in the area of adsorptive application, MXene and MXene-based adsorbents have shown great potential in a large number of studies. AT-527 clinical trial In this regard, a comprehensive understanding of the adsorptive behavior of MXene-based nanomaterials is necessary in order to explain how they remove inorganic and organic contaminants in water. Adsorption by MXene-based adsorbents tends to be highly influenced by not only the physicochemical properties of these adsorbents but also water quality, such as pH value, temperature, background ion, and natural organic matter. Therefore, in this review paper, the effect of various water quality on the adsorption of inorganic and organic contaminants by various types of MXene and MXene-based adsorbents is explored. Furthermore, this review also covers general trends in the synthesis of MXene and regeneration of MXene-based adsorbents in order to assess their stability.Some medicinal plants have been known as immunostimulants, and the medicinal plants extract has been used to control the outbreak of the disease in aquaculture for many years. In this study, a total of 270 crucian carp (30 ± 5 g) were randomly distributed in 9 aquaria (55 cm l × 40 cm w × 50 cm h) and divided into three feeding groups including 0 (Control), 50 mg kg-1 (Diet A) and 100 mg kg-1 (Diet B) of salidroside. The expression of immune-related genes (IL-1β, TNFα, MYD88, CXCL-8, TGF-β, and IL-11) in the kidney had a significant increase when the crucian carp fed with Diet B for 4 weeks (P less then 0.05). Meanwhile, the expression of IL-1β, TNFα, and CXCL-8 in the spleen was significantly up-regulated when the fish fed with Diet B (P less then 0.05). Higher serum alkaline phosphatase (AKP) activity, catalase (CAT) activity, superoxide dismutase (SOD) activity, and complement C3 content were found in the fish which fed with salidroside-supplemented diet. Our results also proved that fish fed with salidroside-supplemented diet for four weeks, especially at a concentration of 100 mg kg-1 diet, improved the protection of crucian carp against A.