Ahmadtimmermann9823
Efforts to identify new drugs for therapeutic and preventive treatments against parasitic nematodes have gained increasing interest with expanding pathogen omics databases and drug databases from which new anthelmintic compounds might be identified. Here, a novel approach focused on integrating a pan-Nematoda multi-omics data targeted to a specific nematode organ system (the intestinal tract) with evidence-based filtering and chemogenomic screening was undertaken. Based on de novo computational target prioritization of the 3,564 conserved intestine genes in A. suum, exocytosis was identified as a high priority pathway, and predicted inhibitors of exocytosis were tested using the large roundworm (Ascaris suum larval stages), a filarial worm (Brugia pahangi adult and L3), a whipworm (Trichuris muris adult), and the non-parasitic nematode Caenorhabditis elegans. 10 of 13 inhibitors were found to cause rapid immotility in A. suum L3 larvae, and five inhibitors were effective against the three phylogenetically diverse parasitic nematode species, indicating potential for a broad spectrum anthelmintics. Several distinct pathologic phenotypes were resolved related to molting, motility, or intestinal cell and tissue damage using conventional and novel histologic methods. Pathologic profiles characteristic for each inhibitor will guide future research to uncover mechanisms of the anthelmintic effects and improve on drug designs. This progress firmly validates the focus on intestinal cell biology as a useful resource to develop novel anthelmintic strategies.Background A relevant case of pulmonary sporotrichosis due to Sporothrix brasiliensis is reported in a 50-year-old immunocompetent woman who had no history of skin trauma, but was in close contact with several stray cats at her nap time. The patient was hospitalized after 7 months of illness. The survey was conducted for pulmonary tuberculosis, an endemic disease in Brazil. She presented multiple central pulmonary nodules images, with central cavitation. Methodology/principal findings The patient bronchoalveolar lavage was cultured and Sporothrix sp. growth was obtained. Then, the isolate (LMMM1097) was accurately identified to the species level by using species-specific polymerase chain reaction (PCR). Molecular diagnosis revealed that the emerging species Sporothrix brasiliensis was the agent of primary pulmonary sporotrichosis and the patient was treated with Amphotericin B lipid complex, but presented severe clinical symptoms and the fatal outcome was observed at day 25 after hospitalization. Conclusions/significance Our report adds important contributions to the clinical-epidemiological features of sporotrichosis, showing the geographic expansion of the agent within different regions of Brazil and a rare clinical manifestation (primary pulmonary sporotrichosis) caused by the emerging agent S. brasiliensis in an immunocompetent female patient.Trimethylguanosine synthase 1 (TGS1) is a conserved enzyme that mediates formation of the trimethylguanosine cap on several RNAs, including snRNAs and telomerase RNA. Previous studies have shown that TGS1 binds the Survival Motor Neuron (SMN) protein, whose deficiency causes spinal muscular atrophy (SMA). Here, we analyzed the roles of the Drosophila orthologs of the human TGS1 and SMN genes. We show that the Drosophila TGS1 protein (dTgs1) physically interacts with all subunits of the Drosophila Smn complex (Smn, Gem2, Gem3, Gem4 and Gem5), and that a human TGS1 transgene rescues the mutant phenotype caused by dTgs1 loss. We demonstrate that both dTgs1 and Smn are required for viability of retinal progenitor cells and that downregulation of these genes leads to a reduced eye size. Importantly, overexpression of dTgs1 partially rescues the eye defects caused by Smn depletion, and vice versa. These results suggest that the Drosophila eye model can be exploited for screens aimed at the identification of genes and drugs that modify the phenotypes elicited by Tgs1 and Smn deficiency. These modifiers could help to understand the molecular mechanisms underlying SMA pathogenesis and devise new therapies for this genetic disease.Animals actively move their sensory organs in order to acquire sensory information. Some rodents, such as mice and rats, employ cyclic scanning motions of their facial whiskers to explore their proximal surrounding, a behavior known as whisking. Here, we investigated the contingency of whisking kinematics on the animal's behavioral context that arises from both internal processes (attention and expectations) and external constraints (available sensory and motor degrees of freedom). We recorded rat whisking at high temporal resolution in 2 experimental contexts-freely moving or head-fixed-and 2 spatial sensory configurations-a single row or 3 caudal whiskers on each side of the snout. We found that rapid sensorimotor twitches, called pumps, occurring during free-air whisking carry information about the rat's upcoming exploratory direction, as demonstrated by the ability of these pumps to predict consequent head and body locomotion. Specifically, pump behavior during both voluntary motionlessness and imposed head fixation exposed a backward redistribution of sensorimotor exploratory resources. Further, head-fixed rats employed a wide range of whisking profiles to compensate for the loss of head- and body-motor degrees of freedom. Finally, changing the number of intact vibrissae available to a rat resulted in an alteration of whisking strategy consistent with the rat actively reallocating its remaining resources. selleck chemical In sum, this work shows that rats adapt their active exploratory behavior in a homeostatic attempt to preserve sensorimotor coverage under changing environmental conditions and changing sensory capacities, including those imposed by various laboratory conditions.The biconcave disk shape of the mammalian red blood cell (RBC) is unique to the RBC and is vital for its circulatory function. Due to the absence of a transcellular cytoskeleton, RBC shape is determined by the membrane skeleton, a network of actin filaments cross-linked by spectrin and attached to membrane proteins. While the physical properties of a uniformly distributed actin network interacting with the lipid bilayer membrane have been assumed to control RBC shape, recent experiments reveal that RBC biconcave shape also depends on the contractile activity of nonmuscle myosin IIA (NMIIA) motor proteins. Here, we use the classical Helfrich-Canham model for the RBC membrane to test the role of heterogeneous force distributions along the membrane and mimic the contractile activity of sparsely distributed NMIIA filaments. By incorporating this additional contribution to the Helfrich-Canham energy, we find that the RBC biconcave shape depends on the ratio of forces per unit volume in the dimple and rim regions of the RBC.