Crewsvega0880

Z Iurium Wiki

Verze z 22. 12. 2024, 14:23, kterou vytvořil Crewsvega0880 (diskuse | příspěvky) (Založena nová stránka s textem „This indicates that the reactivity differences with RHS and 3DOM∗ affect the photolytic kinetics of PhACs from upper estuarine waters to lower reaches, w…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

This indicates that the reactivity differences with RHS and 3DOM∗ affect the photolytic kinetics of PhACs from upper estuarine waters to lower reaches, which is also supported by a good linear relationship between the ratios of photolytic rates for ten PhACs in E-DOM solution with/without halides and the ratios of the reactivity of these pollutants with RHS and 3DOM∗. These findings show that the different reactivity of PhACs with 3E-DOM∗ and RHS influences the photolytic kinetics in estuarine waters with different salinity, and highlights the photochemical behavior of organic micropollutants from upstream to downstream estuarine waters.Lead (Pb2+) is easy to accumulate in fish which become a major source of Pb2+ exposure to humans. In this study, a recombinant Escherichia coli strain expressing Pb2+-specific surface-binding protein anchored by the ice nucleation protein was introduced into grass carp (Ctenopharyngodon idellus) gut to investigate its protective effect against dietary Pb2+ exposure. selleck Pb2+ mostly precipitated on the surface of the engineered strain through Pb2+-specific surface-binding protein, with a maximum adsorption efficiency of 73% and an adsorption capacity of 163 μmol/g dry cells. The Pb2+ concentration in engineered bacteria-fed grass carp was reduced significantly, and the residual level of Pb2+ in feces was increased by 76%, compared with the control group. Meantime, the engineered bacteria were able to mitigate the oxidative stress and histological alterations of intestines and dysbiosis of gut microbiota induced by Pb2+exposure. Thus, the engineered bacterium that can effectively reduce Pb2+ residue in grass carp might be a useful tool for decontamintion of lead in aquatic organisms.China produces and consumes large quantities of brominated flame retardants (BFRs) as well as several other unregulated electronic waste recycling activities, causing high BFR concentrations in the natural environment. Thus, Traditional Chinese Medicines (TCMs) may be contaminated by legacy BFRs (e.g. polybrominated diphenyl ethers (PBDEs)) and emerging BFRs (eBFRs, such as decabromodiphenyl ethane (DBDPE)) during growth, processing, packaging, and transportation. Pheretima, which is a typical animal drug recorded in Chinese Pharmacopoeia, was used as an example to evaluate human exposure to BFRs through TCM intake. This study is the first to determine 25 PBDEs and 5 eBFRs in Pheretima and estimate the daily BFR intake via Pheretima-containing TCMs. Twenty-seven Shanghai Pheretima and fifty-one Guang Pheretima samples were collected between March and June 2019 in southeast China. High BFR detection frequencies were found in Pheretima, of which BDE-209 and DBDPE were the most predominant analytes. The total PBDE contents ranged from 73 pg/g to 8,725 pg/g, while that of the eBFRs varied between 115 pg/g and 2,824 pg/g. The profiles and abundances were found to be species- and origin-dependent. However, the traditional processing of Pheretima may reduce BFR residues. Based on the usual clinical doses of Pheretima and the available chronic oral reference doses of BDE-47, 99, 153, and 209, the mean (95th percentile) of the total hazard quotient was estimated to be 9.1 × 10-5 (2.7 × 10-4). Therefore, there is little risk related to BFR exposure for patients taking formulated Pheretima-containing TCMs. However, it is necessary to establish routine monitoring programs for the co-existence of pollutants in TCMs to perform a systematic and comprehensive risk assessment.Black Carbon (BC) is an absorbing aerosol which has significant impact on the Earth - Atmosphere radiation balance and hence on climate. The variation of BC mass concentration and contribution of fossil fuel and biomass burning have been investigated over the Indian ocean sector of the Southern Ocean during austral summer. BC mass was in the range of 300-500 ng m-3 between 23.3oS to 24.5oS followed by decrease in BC to 150 ng m-3 as moving to higher southern latitudes till 41oS latitude. An increase in BC mass from 250 to 450 ng m-3 was found between 41 and 50oS due to trap of air masses by cyclonic wind and transport of aerosols from the southern part of African and eastern Madagascar regions. Higher BC concentration (250-350 ng m-3) was observed in the latitude range of 57-60oS which can be attributed to convergence of north-westerly and south-easterly winds. The dominant contributor to BC was fossil fuel, which was > 80% during half of the total observations, while > 20% biomass burning contributed to one fifth of observations. The coastal Antarctic region showed higher BC mass concentration with mixed type of contributions of biomass and fossil fuel. Such accumulation of BC near the Antarctic coast can have a crucial impact on the sea-ice albedo which significantly affect the Antarctic climate system locally and global climate in general.COVID-19 induced pandemic situations have put the bio-medical waste (BMW) management system, of the world, to test. Sudden influx, of COVID-infected patients, in health-care facilities, has increased the generation of yellow category BMW (Y-BMW) and put substantial burden on the BMW-incineration units of India. This study presents the compromising situation of the BMW-incineration units of India, in the wake of COVID-19 pandemic, from 21st March 2020 to 31st August 2020. This analysis revealed that on an average each COVID-infected patient in India generates approximately 3.41 kg/d of BMW and average proportion of Y-BMW in it is 50.44%. Further, it was observed that on 13th July 2020, the total Y-BMW, generated by both the normal and COVID-infected patients, fully utilized the BMW-incineration capacity of India. Also, it was made evident that, during the study period, BMW-incineration emitted several pollutants and their concentration was in the order NOx > CO > SOx > PM > HCl > Cd > Pb > Hg > PCBs > Ni > Cr > Be > As. Subsequently, life time cancer risk assessment depicted that with hazard quotient >10-6, Cd may induce carcinogenic health impacts on both the adults and children of India. Therefore, to mitigate the environmental-health impacts associated with the incineration of BMW, evaluation of various options, viz., alternative technologies, substitution of raw materials and separate treatment of specific wastes, was also done. It is expected that the findings of this study may encourage the global auditory comprising scientific community and authorities to adopt alternate BMW-management strategies during the pandemic.

Autoři článku: Crewsvega0880 (Thrane Dowd)