Ahmedreeves4636
Neuronal activity has been identified as a key regulator of neuronal network development, but the impact of activity on migration and terminal positioning of interneuron subtypes is poorly understood. The absence of early subpopulation markers and the presence of intermingled migratory and postmigratory neurons make the developing cerebral cortex a difficult model to answer these questions. Postnatal neurogenesis in the subventricular zone (SVZ) offers a more accessible and compartmentalized model. Triciribine mw Neural stem cells regionalized along the border of the lateral ventricle produce two main subtypes of neural progenitors, granule cells and periglomerular neurons that migrate tangentially in the rostral migratory stream (RMS) before migrating radially in the olfactory bulb (OB) layers. Here, we used targeted postnatal electroporation to compare the migration of these two populations in male and female mice. We do not observe any obvious differences regarding the mode of tangential or radial migration between thesel and periglomerular neuron precursors (PGN-Ps). We find a very striking increase of calcium activity only in granule cell precursors (GC-Ps) when they switch from tangential to radial migration. Interestingly, blocking activity in GC-Ps affected mainly their positioning and survival while PGN-Ps were not affected. These results suggest that neuronal activity is required specifically for the recruitment of GC-Ps in the OB layers.We show for the first time that the neuropeptide orexin modulates pupillary light response, a non-image-forming visual function, in mice of either sex. Intravitreal injection of the orexin receptor (OXR) antagonist TCS1102 and orexin-A reduced and enhanced pupillary constriction in response to light, respectively. Orexin-A activated OX1Rs on M2-type intrinsically photosensitive retinal ganglion cells (M2 cells), and caused membrane depolarization of these cells by modulating inward rectifier potassium channels and nonselective cation channels, thus resulting in an increase in intrinsic excitability. The increased intrinsic excitability could account for the orexin-A-evoked increase in spontaneous discharges and light-induced spiking rates of M2 cells, leading to an intensification of pupillary constriction. Orexin-A did not alter the light response of M1 cells, which could be because of no or weak expression of OX1Rs on them, as revealed by RNAscope in situ hybridization. In sum, orexin-A is likely to decrease the pupil size of mice by influencing M2 cells, thereby improving visual performance in awake mice via enhancing the focal depth of the eye's refractive system.SIGNIFICANCE STATEMENT This study reveals the role of the neuropeptide orexin in mouse pupillary light response, a non-image-forming visual function. Intravitreal orexin-A administration intensifies light-induced pupillary constriction via increasing the excitability of M2 intrinsically photosensitive retinal ganglion cells by activating the orexin receptor subtype OX1R. Modulation of inward rectifier potassium channels and nonselective cation channels were both involved in the ionic mechanisms underlying such intensification. Orexin could improve visual performance in awake mice by reducing the pupil size and thereby enhancing the focal depth of the eye's refractive system.Musical training is associated with increased structural and functional connectivity between auditory sensory areas and higher-order brain networks involved in speech and motor processing. Whether such changed connectivity patterns facilitate the cortical propagation of speech information in musicians remains poorly understood. We here used magnetoencephalography (MEG) source imaging and a novel seed-based intersubject phase-locking approach to investigate the effects of musical training on the interregional synchronization of stimulus-driven neural responses during listening to naturalistic continuous speech presented in silence. MEG data were obtained from 20 young human subjects (both sexes) with different degrees of musical training. Our data show robust bilateral patterns of stimulus-driven interregional phase synchronization between auditory cortex and frontotemporal brain regions previously associated with speech processing. Stimulus-driven phase locking was maximal in the delta band, but was also obsealography intersubject analysis approach to study the cortical synchronization of stimulus-driven neural responses during the perception of continuous natural speech and its relationship to individual musical training. Our results provide evidence that musical training is associated with higher synchronization of stimulus-driven activity between brain regions involved in early auditory sensory and higher-order processing. We suggest that the increased synchronized propagation of speech information may contribute to the previously described musician advantage in processing speech in background noise.Moderate weight loss improves numerous risk factors for cardiometabolic disease; however, long-term weight loss maintenance (WLM) is often thwarted by metabolic adaptations that suppress energy expenditure and facilitate weight regain. Skeletal muscle has a prominent role in energy homeostasis; therefore, we investigated the effect of WLM and weight regain on skeletal muscle in rodents. In skeletal muscle of obesity-prone rats, WLM reduced fat oxidative capacity and downregulated genes involved in fat metabolism. Interestingly, even after weight was regained, genes involved in fat metabolism were also reduced. We then subjected mice with skeletal muscle lipoprotein lipase overexpression (mCK-hLPL), which augments fat metabolism, to WLM and weight regain and found that mCK-hLPL attenuates weight regain by potentiating energy expenditure. Irrespective of genotype, weight regain suppressed dietary fat oxidation and downregulated genes involved in fat metabolism in skeletal muscle. However, mCK-hLPL mice oxidized more fat throughout weight regain and had greater expression of genes involved in fat metabolism and lower expression of genes involved in carbohydrate metabolism during WLM and regain. In summary, these results suggest that skeletal muscle fat oxidation is reduced during WLM and regain, and therapies that improve skeletal muscle fat metabolism may attenuate rapid weight regain.