Abbottduncan2370
This paper presents a detailed-balance analysis required for the achievement of a high-efficiency spectral selective STPV system utilizing thermodynamic and optical modeling approaches. Key parameters affecting the design and optimization of spectrally selective surfaces that are essential for high-efficiency STPV applications are investigated. A complete GaSb-based planar STPV system utilizing a micro-textured absorber and a nanostructure multilayer metal-dielectric coated selective emitter was fabricated and evaluated. The micro-textured absorber features more than 90% absorbance at visible and near-infrared wavelengths. The selective emitter, consisting of two nanolayer coatings of silicon nitride (Si3N4) and a layer of W in between, exhibits high spectral emissivity at wavelengths matching the spectral response of the GaSb cells. The performance of the STPV system was evaluated using a high-power laser diode as a simulated source of concentrated incident radiation. When operated at 1670 K, an output power density of 1.75 W/cm2 and a system efficiency of 8.6% were recorded. this website This system efficiency is higher than those of previously reported experimental STPV systems. Optical and thermal losses that occurred at multiple stages of the energy transport process were modeled and quantified. Essential guidelines to mitigate these losses and further enhance the system performance are also provided.The phase-sensitive X-ray imaging technique based on the bilens interferometer is developed. The essence of the method consists of scanning a sample, which is set upstream of the bilens across the beam of one lens of the interferometer by recording changes in the interference pattern using a high-resolution image detector. The proposed approach allows acquiring the absolute value of a phase shift profile of the sample with a fairly high phase and spatial resolution. The possibilities of the imaging technique were studied theoretically and experimentally using fibres with different sizes as the test samples at the ESRF ID06 beamline with 12 keV X-rays. The corresponding phase shift profile reconstructions and computer simulations were performed. The experimental results are fully consistent with theoretical concepts and appropriate numerical calculations. Applications of the interferometric imaging technique are discussed, as well as future improvements.In this erratum, the funding section of our paper [Optics Express, 27, 38098- 38108 (2019)] has been updated.An erratum to correct a typo in the author list in [Opt. Express27(14), 19778 (2019)].We demonstrate the thermal bleaching effect on a photodarkened thulium-doped fiber (TDF) in detail. The bleaching effect on visible transmission initiates at 250 °C and a complete recovery is achieved at 550 °C. Prior to the recovery, a post-irradiation heat-induced spectral loss is observed. It indicates that an intermediate energy state is generated in the TDF under exposure to near-infrared (NIR) radiation, exhibiting the spectral attenuation in visible (VIS) and NIR region as driven by color center after thermal activation. And, with thermal treatment, the bleached TDF shows a partial photodarkening (PD) resistance when it is subject to photoirradiation again. In addition, the temperature-dependent spectral broadening and red shift that may distort the measured decay curve of excess loss is observed and discussed.Chip-integrated photonic devices have stimulated development in areas ranging from telecommunications to optomechanics. Racetrack resonators have gained popularity for optomechanical transduction due to their high sensitivity and cavity finesse. However, they lack sufficient dynamic range to read out large amplitude mechanical resonators, which are preferred for sensing applications. We present a robust photonic circuit based on a Mach-Zehnder interferometer (MZI) combined with a racetrack resonator that increases linear range without compromising high transduction sensitivity. Optical and mechanical properties of combined MZI-racetrack devices are compared to lone racetracks with the same physical dimensions in the undercoupled, overcoupled and critical coupled regimes. We demonstrate an overall improvement in dynamic range, transduction responsivity, and mass sensitivity of up to 4x, 3x and 2.8x, respectively. Our highly phase sensitive MZI circuit also enables applications such as on-chip optical homodyning.We demonstrate simple optical frequency combs based on semiconductor quantum well laser diodes. The frequency comb spectrum can be tailored by choice of material properties and quantum-well widths, providing spectral flexibility. We demonstrate the correlation in the phase fluctuations between two devices on the same chip by generating a radio-frequency dual comb spectrum.We introduce a novel probabilistic shaping (PS) scheme based on bit-weighted distribution matching (BWDM) into a discrete multi-tone wavelength division multiplexing passive optical network (DMT-WDM-PON) employing low-density parity-check-coded 16-ary quadrature amplitude modulation (16QAM). Unlike the prevailing arithmetic coding-class PS schemes with target symbol probability, such as arithmetic distribution matching and constant composition distribution matching, the proposed one realizes Gaussian-like symbol probability distribution emulation merely based on simple bit-class processing, having the advantage of much lower computational complexity. As the key operation in BWDM, the bit weight intervention is implemented in the process of PS-16QAM generation for elevated transmission probability of binary data '0' by cascaded operations of weight bit labelling and bit reconstruction. The experimental results show that, compared with uniformly-distributed signal with the same net rate, significantly-improved receiver power sensitivity and system tolerance to optical fiber nonlinear effect can be obtained in the DMT-WDM-PON system. The proposed PS scheme can be considered as one of promising practical solutions for more available optical network units due to enlarged system power loss budget for the optical distribution network.