Aldridgepiper8059

Z Iurium Wiki

Verze z 19. 12. 2024, 21:38, kterou vytvořil Aldridgepiper8059 (diskuse | příspěvky) (Založena nová stránka s textem „Halophytic endophytes potentially contribute to the host's adaptation to adverse environments, improving its tolerance against various biotic and abiotic s…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Halophytic endophytes potentially contribute to the host's adaptation to adverse environments, improving its tolerance against various biotic and abiotic stresses. Here, we identified the culturable endophytic bacteria of three crop wild relative (CWR) halophytes Cakile maritima, Matthiola tricuspidata, and Crithmum maritimum. In the present study, the potential of these isolates to improve crop adaptations to various stresses was investigated, using both in vitro and in-planta approaches. Endophytic isolates were identified by their 16S rRNA gene sequence and evaluated for their ability to grow in vitro in high levels of NaCl; inhibit the growth of the economically important phytopathogens Verticillium dahliae, Ralstonia solanacearum, and Clavibacter michiganensis and the human pathogen Aspergillus fumigatus; provide salt tolerance in-planta; and provide growth promoting effect in-planta. Genomes of selected isolates were sequenced. In total, 115 endophytic isolates were identified. At least 16 isolates demonstrated growth under increased salinity, plant growth promotion and phytopathogen antagonistic activity. Three showed in-planta suppression of Verticillium growth. Furthermore, representatives of three novel species were identified two Pseudomonas species and one Arthrobacter. This study provides proof-of-concept that the endophytes from CWR halophytes can be used as "bio-inoculants," for the enhancement of growth and stress tolerance in crops, including the high-salinity stress.The cell surface of Gram-negative bacteria usually exhibits a net negative charge mostly conferred by lipopolysaccharides (LPS). This property sensitizes bacterial cells to cationic antimicrobial peptides, such as polymyxin B, by favoring their binding to the cell surface. Gram-negative bacteria can modify their surface to counteract these compounds such as the decoration of their LPS by positively charged groups. For example, in Escherichia coli and Salmonella, EptA and ArnT add amine-containing groups to the lipid A moiety. In contrast, LpxT enhances the net negative charge by catalyzing the synthesis of tri-phosphorylated lipid A, whose function is yet unknown. Here, we report that E. coli has the intrinsic ability to resist polymyxin B upon the simultaneous activation of the two component regulatory systems PhoPQ and PmrAB by intricate environmental cues. Among many LPS modifications, only EptA- and ArnT-dependent decorations were required for polymyxin B resistance. Conversely, the acquisition of polymyxin B resistance compromised the innate resistance of E. coli to deoxycholate, a major component of bile. The inhibition of LpxT by PmrR, under PmrAB-inducing conditions, specifically accounted for the acquired susceptibility to deoxycholate. We also report that the kinetics of intestinal colonization by the E. coli lpxT mutant was impaired as compared to wild-type in a mouse model of infection and that lpxT was upregulated at the temperature of the host. Together, these findings highlight an important function of LpxT and suggest that a tight equilibrium between EptA- and LpxT-dependent decorations, which occur at the same position of lipid A, is critical for the life style of E. coli.Vigna minima is a climbing annual plant widely distributed in barren wilderness, grass land, and shrub bush of China and other countries such as Japan. However, the rhizobia nodulating with this plant has never been systematically studied. In order to reveal the biodiversity of nodulating rhizobia symbiosis with V. minima, a total of 874 rhizobium isolates were obtained from root nodules of the plant spread in 11 sampling sites of Shandong Peninsula, China, and they were designated as 41 haplotypes in the genus Bradyrhizobium based upon recA sequence analyses. By multilocus sequence analysis (MLSA) of five housekeeping genes (dnaK, glnII, gyrB, recA, and rpoB), the 41 strains representing different recA haplotypes were classified into nine defined species and nine novel genospecies. Bradyrhizobium elkanii, Bradyrhizobium ferriligni, and Bradyrhizobium pachyrhizi were the predominant and universally distributed groups. The phylogeny of symbiotic genes of nodC and nifH showed similar topology and phylogenetic relationships, in which all the representative strains were classified into two clades grouped with strains nodulating with Vigna spp., demonstrating that Vigna spp. https://www.selleckchem.com/products/lxh254.html shared common nodulating groups in the natural environment. All the representative strains formed nodules with V. minima in a nodulation test performed in green house conditions. The correlation between V. minima nodulating rhizobia and soil characteristics analyzed by CANOCO indicates that available nitrogen, total nitrogen, and organic carbon in the soil samples were the main factors affecting the distribution of rhizobia isolated in this study. This study systematically uncovered the biodiversity and distribution characteristics of V. minima nodulating rhizobia for the first time, which provided novel information for the formation of the corresponding rhizobium community.Thermoflexus hugenholtzii JAD2T, the only cultured representative of the Chloroflexota order Thermoflexales, is abundant in Great Boiling Spring (GBS), NV, United States, and close relatives inhabit geothermal systems globally. However, no defined medium exists for T. hugenholtzii JAD2T and no single carbon source is known to support its growth, leaving key knowledge gaps in its metabolism and nutritional needs. Here, we report comparative genomic analysis of the draft genome of T. hugenholtzii JAD2T and eight closely related metagenome-assembled genomes (MAGs) from geothermal sites in China, Japan, and the United States, representing "Candidatus Thermoflexus japonica," "Candidatus Thermoflexus tengchongensis," and "Candidatus Thermoflexus sinensis." Genomics was integrated with targeted exometabolomics and 13C metabolic probing of T. hugenholtzii. The Thermoflexus genomes each code for complete central carbon metabolic pathways and an unusually high abundance and diversity of peptidases, particularly Metalloly focused on chemoorganotrophy, particularly protein degradation, and may interact extensively with other microorganisms in situ.

Autoři článku: Aldridgepiper8059 (Peacock Stevenson)