Alikarstensen4820

Z Iurium Wiki

Verze z 18. 12. 2024, 15:29, kterou vytvořil Alikarstensen4820 (diskuse | příspěvky) (Založena nová stránka s textem „Patients with chronic inflammatory diseases are often treated with immunosuppressants and therefore are of particular concern during the SARS-CoV-2 pandemi…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Patients with chronic inflammatory diseases are often treated with immunosuppressants and therefore are of particular concern during the SARS-CoV-2 pandemic. Serological tests will improve our understanding of the infection and immunity in this population, unless they tests give false positive results. The aim of this study was to evaluate the specificity of SARS-Cov-2 serological assays using samples from patients with chronic inflammatory diseases collected prior to April 2019, thus defined as negative. Samples from patients with multiple sclerosis (MS, n=10), rheumatoid arthritis (RA, n=47) with or without rheumatoid factor (RF) and/or anti-cyclic citrullinated peptide antibodies (anti-CCP2) and systemic lupus erythematosus (SLE, n=10) with or without RF, were analyzed for SARS-CoV-2 antibodies using 17 commercially available lateral flow assays (LFA), two ELISA kits and one in-house developed IgG multiplex bead-based assay. Six LFA and the in-house validated IgG assay correctly produced negative results for all samples. However, the majority of assays (n=13), gave false positive signal for samples from patients with RA and SLE. This was most notable in samples from RF positive RA patients. No false positive samples were detected in any assay using samples from patients with MS. Poor specificity of commercial serological assays could possibly be, at least partly, due to interfering antibodies in samples from patients with chronic inflammatory diseases. For these patients, the risk of false positivity should be considered when interpreting results of the SARS-CoV-2 serological assays.The intestine harbors a complex community of bacterial species collectively known as commensal microbiota. Specific species of resident bacteria, as known as pathobiont, have pathogenic potential and can induce apparent damage to the host and intestinal inflammation in a certain condition. However, the host immune factors that permit its commensalism under steady state conditions are not clearly understood. Here, we studied the gut fitness of Listeria monocytogenes by using germ-free (GF) mice orally infected with this food-borne pathogen. L. monocytogenes persistently exists in the gut of GF mice without inducing chronic immunopathology. L. monocytogenes at the late phase of infection is not capable of infiltrating through the intestinal barrier. L. monocytogenes established the commensalism through the reversible down regulation of virulence gene expression. CD8+ T cells were found to be sufficient for the commensalism of L. monocytogenes. CD8+ T cells responding to L. monocytogenes contributed to the down-regulation of virulence gene expression. Our data provide important insights into the host-microbe interaction and have implications for developing therapeutics against immune disorders induced by intestinal pathogens or pathobionts.Periodontitis is a chronic inflammatory disease associated with the formation of dysbiotic plaque biofilms and characterized by the progressive destruction of the alveolar bone. selleck chemical The transition from health to disease is characterized by a shift in periodontal immune cell composition, from mostly innate (neutrophils) to adaptive (T lymphocytes) immune responses. Resolvin E1 (RvE1) is a specialized pro-resolution mediator (SPMs), produced in response to inflammation, to enhance its resolution. Previous studies have indicated the therapeutic potential of RvE1 in periodontal disease; however, the impact of RvE1 in the microbial-elicited osteoclastogenic immune response remains uncharacterized in vivo. In the present study, we studied the impact of RvE1 on the gingival inflammatory infiltrate formation during periodontitis in a mouse model. First, we characterized the temporal-dependent changes of the main immune cells infiltrating the gingiva by flow cytometry. Then, we evaluated the impact of early or delayed RvE1 administration on the gingival immune infiltration and cervical lymph nodes composition. We observed a consistent inhibitory outcome on T cells -particularly effector T cells- and a protective effect on regulatory T cells (Tregs). Our data further demonstrated the wide range of actions of RvE1, its preventive role in the establishment of the adaptive immune response during inflammation, and bone protective capacity.Herpes simplex virus type 1 (HSV-1) infection is highly prevalent in humans, with approximately two-thirds of the world population living with this virus. However, only a fraction of those carrying HSV-1, which elicits lifelong infections, are symptomatic. HSV-1 mainly causes lesions in the skin and mucosae but reaches the termini of sensory neurons innervating these tissues and travels in a retrograde manner to the neuron cell body where it establishes persistent infection and remains in a latent state until reactivated by different stimuli. When productive reactivations occur, the virus travels back along axons to the primary infection site, where new rounds of replication are initiated in the skin, in recurrent or secondary infections. During this process, new neuron infections occur. Noteworthy, the mechanisms underlying viral reactivations and the exit of latency are somewhat poorly understood and may be regulated by a crosstalk between the infected neurons and components of the immune system. Here, we review and discuss the immune responses that occur at the skin during primary and recurrent infections by HSV-1, as well as at the interphase of latently-infected neurons. Moreover, we discuss the implications of neuronal signals over the priming and migration of immune cells in the context of HSV-1 infection.NK cells play an important role in the control of tuberculosis infection they are not only able to kill the infected cells, but also control the activity of macrophages and development of the adaptive immune response. Still, there is little information on the role of specific NK cell subsets in this network. In this study, we focused on the mycobacteria-driven responses of the NK cells expressing HLA-DR - a type of MHC class II. We have revealed that this subset is increased in the peripheral blood of patients with primary diagnosed tuberculosis, and expands in response to in vitro stimulation with ultrasonically destroyed Mycobacterium tuberculosis cells (sonicate). The expanded HLA-DR+ NK cells had less differentiated phenotype, higher proliferative activity and increased expression of NKp30 and NKp46 receptors. HLA-DR+CD56dim NK cells showed higher IFNγ production and degranulation level than the respective HLA-DR- NK cells in response to both 24 h and 7 day stimulation with sonicate, while HLA-DR+CD56bright NK cells mostly demonstarted similar high responsiveness to the same stimulating conditions as their HLA-DR-CD56bright counterparts.

Autoři článku: Alikarstensen4820 (Zimmermann Bek)