Aagaardwesth8507

Z Iurium Wiki

Verze z 15. 12. 2024, 16:32, kterou vytvořil Aagaardwesth8507 (diskuse | příspěvky) (Založena nová stránka s textem „The ancestor could apparently form chitinous cysts, possessed proteolytic enzyme machinery, compartmentalized the sulfate activation pathway in mitochondri…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The ancestor could apparently form chitinous cysts, possessed proteolytic enzyme machinery, compartmentalized the sulfate activation pathway in mitochondrion-related organelles, and possessed the components for anaerobic energy metabolism. After the split of Entamoebidae, this lineage gained genes encoding surface membrane proteins that are involved in host-parasite interactions. In contrast, gene gains identified in the M. balamuthi lineage were predominantly associated with polysaccharide catabolic processes. A phylogenetic analysis of acquired genes suggested an essential role of lateral gene transfer in parasite evolution (Entamoeba) and in adaptation to anaerobic aquatic sediments (Mastigamoeba).

Cell senescence is implicated in numerous age-related conditions. Drugs and nutritional supplements developed for a variety of purposes kill senescent cells (senolytics) or suppress their secretions (senomorphics). There is interest in repurposing such drugs to treat or prevent age-related diseases. To date, only small-scale preliminary trials have been conducted.

At a workshop convened by the National Institute on Aging in August 2019, academic, industry, and government scientists reviewed issues for phase II trials of potentially repurposable drugs, or dietary supplements, to assess benefits and risks of their senolytic (killing senescent cells) or senomorphic (altering senescent cells' phenotypes) effects in treating or preventing age-related conditions.

Participants reviewed mechanisms and effects of cellular senescence, senolytics, and senomorphics of several classes and their potential role in treating or preventing disease, modulators of the senescence-associated secretory phenotype, needs for sesenolytic and cytotoxic effects. Markers of specific senescent cell types are needed to assess intervention responses. There are potential interactions with coexisting diseases and their treatments in older persons. Standardized measures could enhance comparisons and pooling of data. Additional characterization of human cell senescent phenotypes is needed for developing better and more specific senolytics and senomorphics.Profound T-cell lymphopenia is the hallmark of severe Covid-19. T-cell proliferation is telomere length (TL)-dependent and telomeres shorten with age. Older Covid-19 patients, we hypothesize, are therefore at a higher risk of having TL-dependent lymphopenia. Selleck Crenolanib We measured TL by the novel Telomere Shortest Length Assay (TeSLA), and by Southern blotting of the terminal restriction fragments (SB) in peripheral blood mononuclear cells of 17 Covid-19 and 21 non-Covid-19 patients, aged 87 ± 8 (mean ± SD) and 87 ± 9 years, respectively. TeSLA tallies and measures single telomeres, including short telomeres undetected by SB. Such telomeres are relevant to TL-mediated biological processes, including cell viability and senescence. TeSLA yields two key metrics the proportion of telomeres with different lengths (expressed in %), and their mean, TeSLA mTL (expressed in kb). Lymphocyte count (10 9/L) was 0.91 ± 0.42 in Covid-19 patients and 1.50 ± 0.50 in non-Covid-19 patients (P less then 0.001). In Covid-19 patients, but not in non-Covid-19 patients, lymphocyte count was inversely correlated with the proportion of telomeres shorter than 2 kb (P = 0.005) and positively correlated with TeSLA mTL (P = 0.03). Lymphocyte count was not significantly correlated with SB mTL in either Covid-19 or non-Covid-19 patients. We propose that compromised TL-dependent T-cell proliferative response, driven by short telomere in the TL distribution, contributes to Covid-19 lymphopenia among old adults. We infer that infection with SARS-CoV-2 uncovers the limits of the TL reserves of older persons.Prenatal exposure to glucocorticoids (GC) is a central topic of interest in medicine since GCs are essential for the maturation of fetal organs and intrauterine growth. Synthetic glucocorticoids, which are used in obstetric practice, exert beneficial effects on the fetus, but have also been reported to lead to intrauterine growth retardation (IUGR). In this study, a model of growth restriction in mice was established through maternal administration of dexamethasone during late gestation. We hypothesised that GC overexposure may adversely affect placental angiogenesis and fetal and placental growth. Female BALB/c mice were randomly assigned to control or dexamethasone treatment, either left to give birth or euthanised on days 15, 16, 17 and 18 of gestation followed by collection of maternal and fetal tissue. The IUGR rate increased to 100% in the dexamethasone group (8 mg/kg body weight on gestational days 14 and 15) and pups had clinical features of symmetrical IUGR at birth. Dexamethasone administration significantly decreased maternal body weight gain and serum corticosterone levels. Moreover, prenatal dexamethasone treatment not only induced fetal growth retardation but also decreased placental weight. In IUGR placentas, VEGFA protein levels and mRNA expression of VEGF receptors were reduced and NOS activity was lower. Maternal dexamethasone administration also reduced placental expression of the GC receptor, αGR. We demonstrated that maternal dexamethasone administration causes fetal and placental growth restriction. Furthermore, we propose that the growth retardation induced by prenatal GC overexposure may be caused, at least partially, by an altered placental angiogenic profile.

Newly emerged mutations within the Plasmodium falciparum chloroquine resistance transporter (PfCRT) can confer piperaquine resistance in the absence of amplified plasmepsin II (pfpm2). In this study, we estimated the prevalence of co-circulating piperaquine resistance mutations in P. falciparum isolates collected in northern Cambodia from 2009-2017.

The sequence of pfcrt was determined for 410 P. falciparum isolates using PacBio amplicon sequencing or whole genome sequencing. Quantitative PCR was used to estimate pfpm2 and pfmdr1 copy number.

Newly emerged PfCRT mutations increased in prevalence after the change to dihydroartemisinin-piperaquine in 2010, with >98% of parasites harboring these mutations by 2017. After 2014, the prevalence of PfCRT F145I declined, being out-competed by parasites with less resistant, but more fit PfCRT alleles. After the change to artesunate-mefloquine, the prevalence of parasites with amplified pfpm2 decreased, with nearly half of piperaquine-resistant PfCRT mutants having single copy pfpm2.

Autoři článku: Aagaardwesth8507 (Corneliussen English)