Ahmaddickson2577
substantially increased all-cause mortality risk.Bone morphogenetic proteins (BMPs) are known to induce new bone formation in vivo but treating trabecular bone defects with a BMP based therapeutic remains controversial. Here, we evaluated the safety and efficacy of a novel Autologous Bone Graft Substitute (ABGS) comprised of recombinant human BMP6 (rhBMP6) dispersed within an autologous blood coagulum (ABC) as a physiological natural carrier in patients with a closed distal radial fracture (DRF). We enrolled 32 patients in a randomized, standard of care (SoC) and placebo (PBO) controlled, double-blinded Phase I First in Human (FiH) clinical trial. ABGS was prepared from peripheral blood as 250 μg rhBMP6/mL ABC or PBO (1 mL ABC containing excipients only) and was administered dorsally via a syringe injection into the fracture site following closed fracture fixation with 3 Kirschner wires. Patients carried an immobilization for 5 weeks and were followed-up for 0 to 26 weeks by clinical examination, safety, serial radiographic analyses and CT. During the 13 weeks follow-up and at 26 weeks post study there were no serious adverse reactions recorded. The results showed that there were no detectable anti-rhBMP6 antibodies in the blood of any of the 32 patients at 13- and 26-weeks following treatment. Pharmacokinetic analyses of plasma from patients treated with ABGS showed no detectable rhBMP6 at any time point within the first 24 h following administration. PLX5622 mouse The CT image and radiographic analyses score from patients treated with AGBS showed significantly accelerated bone healing as compared to PBO and SoC at 5 and 9 weeks (with high effect sizes and P = 0.027), while at week 13 all patients had similar healing outcomes. In conclusion, we show that intraosseous administration of ABGS (250 μg rhBMP6/mL ABC) into the distal radial fracture site demonstrated a good tolerability with no serious adverse reactions as well as early accelerated trabecular bone healing as compared to control PBO and SoC patients.
Two weekly infusions of ferric carboxymaltose (FCM) are commonly prescribed for treatment of iron-deficiency anemia. However, administration of FCM increases intact levels of fibroblast growth factor 23 (FGF23), which causes hypophosphatemia due to renal phosphate wasting, calcitriol deficiency and secondary hyperparathyroidism. The adverse effects of FCM on mineral metabolism and bone health emerged from case reports and secondary analyses of trials. Data on these safety signals with FCM in clinical practice are limited because markers of mineral and bone metabolism are not routinely checked.
To obtain real-world experience with effects of FCM on mineral and bone metabolism, we conducted a prospective observational study of 16 women who were managed at a single-center hematology clinic for iron-deficiency anemia. From October 2016 to February 2018, all participants received two weekly infusions of FCM at a hematology infusion clinic. We hypothesized that FCM would decrease phosphate, increase intact FGF2 osteocalcin during this time period. iFGF23, but not PTH, was independently associated with decreased phosphate. iFGF23 was also significantly associated with decrease in calcitriol from week zero to week two. Elevation in BAP suggests disordered bone mineralization in response to FCM therapy.
In this prospective observational study of women with iron deficiency anemia, two FCM infusions significantly altered markers of bone mineralization and mineral metabolism. The results suggest that FCM should be used cautiously in the treatment of iron-deficiency anemia.
In this prospective observational study of women with iron deficiency anemia, two FCM infusions significantly altered markers of bone mineralization and mineral metabolism. The results suggest that FCM should be used cautiously in the treatment of iron-deficiency anemia.
The role of parental cardiorespiratory conditions on fracture risk is unclear. We examined the associations between parental cardiorespiratory conditions and offspring fracture risk.
In this population-based retrospective cohort study, we identified 279,085 offspring aged≥40years between April 1, 1997 and December 31, 2015 with successful linkage to 273,852 mothers and 254,622 fathers. Parental cardiorespiratory conditions, including cerebral vascular disease, congestive heart failure, hypertension, ischemic heart disease, myocardial infarction, chronic obstructive pulmonary disease (COPD) and peripheral vascular disease, were ascertained using physician and hospital records dating back to 1979. The outcome was offspring incident major osteoporotic fracture (MOF).
During an average of 11.8years of offspring follow-up, we identified 8762 (3.1%) incident MOF. Either parent congestive heart failure (adjusted hazard ratio [HR] 1.13; 95% confidence interval [CI] 1.07-1.19) and COPD (adjusted HR 1.12; 95% CI 1.07-1.17) were independently associated with increased offspring MOF risk; all their false discovery rates were <0.001. Similar risk estimates were observed when analyses were performed for fathers only, mothers only or both parents, in multivariable models with and without adjustment for offspring cardiorespiratory conditions, and stratified by offspring sex and offspring incident fracture site. Parental cerebrovascular disease, hypertension, ischemic heart disease and myocardial infarction were not associated with offspring MOF.
Parental congestive heart failure and parental COPD are independent risk factors for offspring MOF.
Parental congestive heart failure and parental COPD are independent risk factors for offspring MOF.The Bone Morphogenetic Proteins (BMPs) are the largest class signaling molecules within the greater Transforming Growth Factor Beta (TGFβ) family, and are responsible for a wide array of biological functions, including dorsal-ventral patterning, skeletal development and maintenance, as well as cell homeostasis. As such, dysregulation of BMPs results in a number of diseases, including fibrodysplasia ossificans progressiva (FOP) and pulmonary arterial hypertension (PAH). Therefore, understanding BMP signaling and regulation at the molecular level is essential for targeted therapeutic intervention. This review discusses the recent advances in the structural and biochemical characterization of BMPs, from canonical ligand-receptor interactions to co-receptors and antagonists. This work aims to highlight how BMPs differ from other members of the TGFβ family, and how that information can be used to further advance the field. Lastly, this review discusses several gaps in the current understanding of BMP structures, with the aim that discussion of these gaps will lead to advancements in the field.