Acostakelley8981

Z Iurium Wiki

Verze z 14. 12. 2024, 13:27, kterou vytvořil Acostakelley8981 (diskuse | příspěvky) (Založena nová stránka s textem „This paper presents an experimental investigation of the sulfuration mechanism of concrete. The microstructure, mineral phase composition, substance conten…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

This paper presents an experimental investigation of the sulfuration mechanism of concrete. The microstructure, mineral phase composition, substance content, and pH of the concrete were determined using scanning electron microscopy, X-ray diffraction, comprehensive thermal analysis, and pore-solution pH test. It was observed that light-grey spots appeared on the surface of the specimen, and a large amount of powdery precipitated substances appeared. At the initial stage of sulfuration reaction, the formation of ettringite blocked the concrete pores and densified its cracks and voids. Subsequently, ettringite reacted with H+ to form gypsum, and the continuous increase in gypsum in the pores increased the number of cracks and broadened their width. Gypsum was the final product of the sulfuration reaction, and the mass percentage of gypsum in the powdery precipitated substances at different water-cement ratios was more than 50%. When the water-cement ratios was 0.37, 0.47, and 0.57, the highest Ca(OH)2 content was found for the lowest water-cement ratio. As the water-cement ratios increased, the amount of powdery precipitated substances decreased and the CaCO3 content and pH increased.Three-dimensional (3D) printing, as one of the most popular recent additive manufacturing processes, has shown strong potential for the fabrication of biostructures in the field of tissue engineering, most notably for bones, orthopedic tissues, and associated organs. Desirable biological, structural, and mechanical properties can be achieved for 3D-printed constructs with a proper selection of biomaterials and compatible bioprinting methods, possibly even while combining additive and conventional manufacturing (AM and CM) procedures. However, challenges remain in the need for improved printing resolution (especially at the nanometer level), speed, and biomaterial compatibilities, and a broader range of suitable 3D-printed materials. This review provides an overview of recent advances in the development of 3D bioprinting techniques, particularly new hybrid 3D bioprinting technologies for combining the strengths of both AM and CM, along with a comprehensive set of material selection principles, promising medical applications, and limitations and future prospects.Guarana plant is a native of the Amazon region. Due to its high amount of caffeine and tannins, the seed has medicinal and stimulating properties. The guarana industry has grown exponentially in recent years; however, little information is available about associated mycobiota, particularly endophytic fungi. The present study aimed to compare the distribution and diversity of endophytic fungi associated with the leaves and seeds of anthracnose-resistant and susceptible guarana plants produced in Maués and Manaus, Amazonas State, Brazil. A total of 7514 endophytic fungi were isolated on Potato Dextrose Agar, Sabouraud and Czapek media, and grouped into 77 morphological groups. Overall, fungal communities in guarana leaves and seeds were mainly composed by Colletotrichum and Fusarium genera, but also by Chondrostereum, Clonostachys, Curvularia, Hypomontagnella, Lentinus, Neopestalotiopsis, Nigrospora, Peroneutypa, Phyllosticta, Simplicillium and Tinctoporellus. Obtained results indicate that some members of Colletotrichum and Fusarium genera may have experienced dysbiosis during the guarana domestication process, suggesting that some individuals may behave as latent pathogens. selleck products The susceptible guarana genotype cultivated in Manaus presented higher fungal diversity. The relative abundance of taxa and diversity among samples suggests that communities are structured by genotype and geographic location. This is the first report of mycobiota in both guarana leaves and seeds.Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) involvement has been established in the oncogenic cell signaling of acute myeloid leukemia (AML) cells and in the crosstalk with their niche. We have shown an expression of NOX subunits in AML cell lines while NOX activity is lacking in the absence of exogenous stimulation. Here, we used AML cell lines as models to investigate the specificity of VAS3947, a current NOX inhibitor. Results demonstrated that VAS3947 induces apoptosis in AML cells independently of its anti-NOX activity. High-performance liquid chromatography (HPLC) and mass spectrometry analyses revealed that VAS3947 thiol alkylates cysteine residues of glutathione (GSH), while also interacting with proteins. Remarkably, VAS3947 decreased detectable GSH in the MV-4-11 cell line, thereby suggesting possible oxidative stress induction. However, a decrease in both cytoplasmic and mitochondrial reactive oxygen species (ROS) levels was observed by flow cytometry without disturbance of mitochondrial mass and membrane potential. Thus, assuming the consequences of VAS3947 treatment on protein structure, we examined its impact on endoplasmic reticulum (ER) stress. An acute unfolded protein response (UPR) was triggered shortly after VAS3947 exposure, through the activation of inositol-requiring enzyme 1α (IRE1α) and PKR-like endoplasmic reticulum kinase (PERK) pathways. Overall, VAS3947 induces apoptosis independently of anti-NOX activity, via UPR activation, mainly due to aggregation and misfolding of proteins.

Obesity is associated with metabolic syndrome, hypertension, dyslipidemia, nonalcoholic fatty liver disease (NAFLD), and type 2 diabetes. In this study, we investigated whether the dietary supplementation of pomegranate seed oil (PSO) exerted a protective effect on liver lipid uptake, fibrosis, and mitochondrial function in a mouse model of obesity and insulin resistance.

In this in vivo study, eight-week-old C57BL/6J male mice were fed with a high fat diet (HFD) for 24 weeks and then were divided into three groups as follows group (1) Lean; group (

= 6) (2) HF diet; group (

= 6) (3) HF diet treated with PSO (40 mL/kg food) (

= 6) for eight additional weeks starting at 24 weeks. Physiological parameters, lipid droplet accumulation, inflammatory biomarkers, antioxidant biomarkers, mitochondrial biogenesis, insulin sensitivity, and hepatic fibrosis were determined to examine whether PSO intervention prevents obesity-associated metabolic syndrome.

The PSO group displayed an increase in oxygen consumption, as well as a decrease in fasting glucose and blood pressure (

< 0.

Autoři článku: Acostakelley8981 (Barnes Siegel)