Aarupbojesen6685
Free proline, termed proline, is a biomarker used for diagnosing drought stress in plants. A previously developed proline-ninhydrin reaction-based paper sensor could quickly and easily detect proline, but it was limited by low sensitivity. In this study, we developed an enclosed multilayer paper-based microfluidic sensor with high sensitivity for the quantitative detection of proline in plants. The multilayer paper-based sensor was manufactured using simple wax printing and origami methods, and contained an internal mixing channel to allow good mixing of the proline with ninhydrin, increasing the proline-ninhydrin reactivity and providing accurate and sensitive proline detection. By preloading ninhydrin onto the sample loading area, uniform coloration of the sensing window was achieved, allowing quantitative analysis of various proline concentrations using a constant reaction time. Only the sensing window and sample loading area were exposed to limit sample evaporation and contamination from the external environment. The LOD of the fabricated sensor was 23 μM, which is approximately 29-fold lower than that of the previously proposed paper sensor (657 μM). Samples were extracted from A. thaliana plants subjected to drought stress for proline detection. The proline concentrations measured using the developed paper sensor and a spectrophotometric method were not statistically significant at a confidence level of 95%. Therefore, the developed sensor can be applied to measure proline concentrations precisely in the field with a low detection limit. The developed paper-based sensor can be used to detect the early stages of drought in plants and thus improve crop productivity. https://www.selleckchem.com/products/OSI-906.html Nanozymes, or nanomaterials that mimic the behaviors of enzymes, are highly promising materials for biomedical applications because of their excellent chemical stability under harsh conditions, simple preparation method and lower costs compared with natural enzymes. We herein report the intrinsic oxidase-mimicking activity of molybdenum oxide nanoparticles (MoO3 NPs). MoO3 NPs catalyzed the oxidation of colorless 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) to green product. The catalytic mechanism of the oxidase-mimicking activity of the MoO3 NPs was investigated in detail using electron spin resonance and a radical inhibition method. The oxidation of ABTS stems from 1O2 generated from the interaction between MoO3 NPs and dissolved oxygen in the solution. Acid phosphatase (ACP) catalyzes the hydrolysis of the ascorbic acid 2-phosphate (AAP) substrate to produce ascorbic acid (AA). AA was found to fade the coloration process of the MoO3 NP-mediated ABTS oxidation. By combining the oxidase-mimicking property of the MoO3 NPs and the ACP-catalyzed hydrolysis of AAP, a novel and simple colorimetric method for detecting ACP was established. The linear range for ACP determination is 0.09-7.3 U/L with a detection limit of 0.011 U/L. This new colorimetric method was successfully applied to the detection of ACP in diluted human serum samples and screening of ACP inhibitors. The present study proposes MoO3 NPs as a new oxidase mimic for establishing various biosensing method. We have developed a simple and convenient route to prepare fluorescent carbon dots with dual emission peaks respectively at 470 and 570 nm. The prepared dual-emission carbon dots can be used for ratiometric detection of Fe3+ ions in the range from 0 to 50 μmol·L-1 with 0.8 μmol·L-1 detection limit based on the fluorescence quenching at 570 nm. The quenched fluorescence induced by Fe3+ ions could be recovered by pyrophosphate. We further used the carbon dots-Fe3+ ions-pyrophosphate mixed system for ratiometric detection of acid phosphatase in the range from 0.08 to 6.75 μg·mL-1 with 0.01 μg·mL-1 detection limit. Herein, a novel ratiometric fluorescent probe based on CDs@Eu/GMP ICP nanoparticles was developed for the detection of Aβ monomer in rat as a biomarker for Alzheimer's disease (AD) by fully exploring the competitive coordination interaction and by taking advantage of excellent optical property of carbon dots sensitized lanthanide infinite coordination polymer (ICP) nanoparticles. The carbon dots (CDs) with abundant functional groups were encapsulated into Eu/GMP ICPs through self-adaptive chemistry, which could not only sensitize the red fluorescence of Eu/GMP ICPs effectively, but also act as an internal reference for self-correction. In the absence of Cu2+, the as-formed CDs@Eu/GMP ICPs exhibited the characteristic emission of CDs at 400 nm and strong emission of Eu3+ at 592 nm, 615 nm, 650 nm and 694 nm. With the addition of Cu2+, the red fluorescence of Eu3+ decreased due to the coordination interaction between CDs and Cu2+, thus destroyed the antenna effect. After the subsequent addition of Aβ monomer, the specific binding occurred between Cu2+ and Aβ monomer, and then the red fluorescence of Eu3+ restored again. During this process, the fluorescence of CDs remained unchanged, thus could be used as an internal reference to cancel out the environmental fluctuation and was more adaptive for the detection of Aβ monomer in biological fluids. The method demonstrated here was highly sensitive, free from the interference of other species in rat brain, the in vivo analysis of Aβ monomer in CSF and different brain regions from normal rats and Alzheimer's rats could be realized, which was of great significance for better understanding the mechanism of AD and paving the way to understand the chemical essence involved in AD. An effective ratiometric fluorescent probe based on silicon particles/gold nanoclusters (SiNPs/AuNCs) nanohybrid has been fabricated and applied to be a "on-off-on" switch sensing platform for detection of Hg2+ and cysteine. In this elaborated sensing platform, the SiNPs just acted as internal reference signal, providing a build-in correction for background interferences and environmental effects, to which the AuNCs as a signal report unit for Hg2+ response was covalently grafted by amidation reaction. The fluorescence intensity of SiNPs/AuNCs could be effectively quenched upon adding Hg2+, accompanied with an easily distinguishable fluorescent color change. The ratiometric fluorescence signal (F649/F511) of the established nanoprobe was linearly proportional to the concentration of Hg2+ ranging from 0.02 to 24 μM with a low detection limit of 5.6 nM, which is below the guideline value of Hg2+ in drinking water set by the World Health Organization. Interestingly, upon addition of cysteine, the Hg2+-quenched fluorescence intensity was recovered gradually.