Abbottgregory5306

Z Iurium Wiki

Verze z 28. 11. 2024, 23:47, kterou vytvořil Abbottgregory5306 (diskuse | příspěvky) (Založena nová stránka s textem „These results demonstrate that INs, just like song elements, are shaped both by learning and biological predispositions. More generally, our results sugges…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

These results demonstrate that INs, just like song elements, are shaped both by learning and biological predispositions. More generally, our results suggest mechanisms for generating variation in introductory gestures between individuals while still maintaining the species-specific structure of complex displays like birdsong.According to evolutionary theory, sex ratio distortions caused by reproductive parasites such as Wolbachia and Spiroplasma are predicted to be rapidly normalized by the emergence of host nuclear suppressors. However, such processes in the evolutionary arms race are difficult to observe because sex ratio biases will be promptly hidden and become superficially unrecognizable. The evolution of genetic suppressors has been reported in just two insect species so far. In the small brown planthopper, Laodelphax striatellus, female-biases caused by Spiroplasma, which is a 'late' male-killer, have been found in some populations. During the continuous rearing of L. striatellus, we noted that a rearing strain had a 1 1 sex ratio even though it harboured Spiroplasma. Through introgression crossing experiments with a strain lacking suppressors, we revealed that the L. striatellus strain had the zygotic male-killing suppressor acting as a dominant trait. The male-killing phenotype was hidden by the suppressor even though Spiroplasma retained its male-killing ability. This is the first study to demonstrate the existence of a late male-killing suppressor and its mode of inheritance. Our results, together with those of previous studies, suggest that the inheritance modes of male-killing suppressors are similar regardless of insect order or early or late male killing.Long-term patterns of phenotypic change are the cumulative results of tens of thousands to millions of years of evolution. Yet, empirical and theoretical studies of phenotypic selection are largely based on contemporary populations. The challenges in studying phenotypic evolution, in particular trait-fitness associations in the deep past, are barriers to linking micro- and macroevolution. Here, we capitalize on the unique opportunity offered by a marine colonial organism commonly preserved in the fossil record to investigate trait-fitness associations over 2 Myr. We use the density of female polymorphs in colonies of Antartothoa tongima as a proxy for fecundity, a fitness component, and investigate multivariate signals of trait-fitness associations in six time intervals on the backdrop of Pleistocene climatic shifts. We detect negative trait-fitness associations for feeding polymorph (autozooid) sizes, positive associations for autozooid shape but no particular relationship between fecundity and brood chamber size. In addition, we demonstrate that long-term trait patterns are explained by palaeoclimate (as approximated by ∂18O), and to a lesser extent by ecological interactions (i.e. overgrowth competition and substrate crowding). Our analyses show that macroevolutionary outcomes of trait evolution are not a simple scaling-up from the trait-fitness associations.Most recognition is based on identifying features, but specialization for face recognition in primates relies on a different mechanism, termed 'holistic processing' where facial features are bound together into a gestalt which is more than the sum of its parts. Here, we test whether individual face recognition in paper wasps also involved holistic processing using a modification of the classic part-whole test in two related paper wasp species Polistes fuscatus, which use facial patterns to individually identify conspecifics, and Polistes dominula, which lacks individual recognition. We show that P. fuscatus use holistic processing to discriminate between P. fuscatus face images but not P. dominula face images. By contrast, P. dominula do not rely on holistic processing to discriminate between conspecific or heterospecific face images. Therefore, P. fuscatus wasps have evolved holistic face processing, but this ability is highly specific and shaped by species-specific and stimulus-specific selective pressures. Convergence towards holistic face processing in distant taxa (primates, wasps) as well as divergence among closely related taxa with different recognition behaviour (P. dominula, P. fuscatus) suggests that holistic processing may be a universal adaptive strategy to facilitate expertise in face recognition.Conspecific negative distance- and density-dependence is often assumed to be one of the most important mechanisms controlling forest community assembly and species diversity globally. Plant pathogens, and insect and mammalian herbivores, are the most common natural enemy types that have been implicated in this phenomenon, but their general effects at different plant life stages are still unclear. Here, we conduct a meta-analysis of studies that involved robust manipulative experiments, using fungicides, insecticides and exclosures, to assess the contributions of different natural enemy types to distance- and density-dependent effects at seed and seedling stages. We found that distance- and density-dependent mortality caused by natural enemies was most likely at the seedling stage and was greater at higher mean annual temperatures. Conspecific negative distance- and density-dependence at the seedling stage is significantly weakened when fungicides were applied. By contrast, negative conspecific distance- and density-dependence is not a general pattern at the seed stage. High seed mass reduced distance- and density-dependent mortality at the seed stage. Caerulein in vivo Seed studies excluding only large mammals found significant negative conspecific distance-dependent mortality, but exclusion of all mammals resulted in a non-significant effect of conspecifics. Our study suggests that plant pathogens are a major cause of distance- and density-dependent mortality at the seedling stage, while the impacts of herbivores on seedlings have been understudied. At the seed stage, large and small mammals, respectively, weaken and enhance negative conspecific distance-dependent mortality. Future research should identify specific agents of mortality, investigate the interactions among different enemy types and assess how global change may affect natural enemies and thus influence the strength of conspecific distance- and density-dependence.

Autoři článku: Abbottgregory5306 (Loomis Gold)