Glassbengtsson4683

Z Iurium Wiki

Verze z 22. 11. 2024, 18:14, kterou vytvořil Glassbengtsson4683 (diskuse | příspěvky) (Založena nová stránka s textem „non-social preference, and ECN-ventral striatum (VS) connectivity did not track social closeness. Taken together, these novel findings suggest that DMN int…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

non-social preference, and ECN-ventral striatum (VS) connectivity did not track social closeness. Taken together, these novel findings suggest that DMN interacts with components of attention and control networks to signal the relative importance of positive experiences with close others vs. strangers. © The Author(s) 2020. Published by Oxford University Press.Human cytosolic leucyl-tRNA synthetase (hcLRS) is an essential and multifunctional enzyme. Its canonical function is to catalyze the covalent ligation of leucine to tRNALeu, and it may also hydrolyze mischarged tRNAs through an editing mechanism. Together with eight other aminoacyl-tRNA synthetases (AaRSs) and three auxiliary proteins, it forms a large multi-synthetase complex (MSC). Beyond its role in translation, hcLRS has an important moonlight function as a leucine sensor in the rapamycin complex 1 (mTORC1) pathway. Since this pathway is active in cancer development, hcLRS is a potential target for anti-tumor drug development. Moreover, LRS from pathogenic microbes are proven drug targets for developing antibiotics, which however should not inhibit hcLRS. Here we present the crystal structure of hcLRS at a 2.5 Å resolution, the first complete structure of a eukaryotic LRS, and analyze the binding of various compounds that target different sites of hcLRS. We also deduce the assembly mechanism of hcLRS into the MSC through reconstitution of the entire mega complex in vitro. Overall, our study provides the molecular basis for understanding both the multifaceted functions of hcLRS and for drug development targeting these functions. © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.Research in social neuroscience has increasingly begun to use the tools of computational neuroscience to better understand behaviour. Such approaches have proven fruitful for probing underlying neural mechanisms. However, little attention has been paid to how the structure of experimental tasks relates to real-world decisions, and the problems that brains have evolved to solve. To go significantly beyond current understanding, we must begin to use paradigms and mathematical models from behavioural ecology, which offer insights into the decisions animals must make successfully in order to survive. One highly influential theory-Marginal Value Theorem (MVT)-precisely characterises and provides an optimal solution to a vital foraging decision that most species must make the patch-leaving problem. Animals must decide when to leave collecting rewards in a current patch (location) and travel somewhere else. We propose that many questions posed in social neuroscience can be approached as patch-leaving problems. A richer understanding of the neural mechanisms underlying social behaviour will be obtained by using MVT. In this 'tools of the trade' article, we outline the patch-leaving problem, the computations of MVT, and discuss is application to social neuroscience. Furthermore, we consider practical challenges and offer solutions for designing paradigms probing patch-leaving, both behaviourally and when using neuroimaging techniques. © The Author(s) 2020. Published by Oxford University Press.Computer-generated characters, so-called avatars, are widely used in advertising, entertainment, human-computer interaction, or as research tools to investigate human emotion perception. However, brain responses to avatar and human faces have scarcely been studied to date. As such, it remains unclear whether dynamic facial expressions of avatars evoke different brain responses than dynamic facial expressions of humans. In this study, we designed anthropomorphic avatars animated with motion tracking and tested whether the human brain processes fearful and neutral expressions in human and avatar faces differently. Our fMRI results showed that fearful human expressions evoked stronger responses than fearful avatar expressions in the ventral anterior and posterior cingulate gyrus, the anterior insula, the anterior and posterior superior temporal sulcus, and the inferior frontal gyrus. Fearful expressions in human and avatar faces evoked similar responses in the amygdala. We did not find different responses to neutral human and avatar expressions. Our results highlight differences, but also similarities in the processing of fearful human expressions and fearful avatar expressions even if they are designed to be highly anthropomorphic and animated with motion tracking. This has important consequences for research using dynamic avatars, especially when processes are investigated that involve cortical and subcortical regions. © The Author(s) 2020. Published by Oxford University Press.Social neuroscience aims to describe the neural systems that underpin social cognition and behaviour. Over the past decade, researchers have begun to combine computational models with neuroimaging to link social computations to the brain. Inspired by approaches from reinforcement learning theory, which describes how decisions are driven by the unexpectedness of outcomes, accounts of the neural basis of prosocial learning, observational learning, mentalising and impression formation have been developed. Here we provide an introduction for researchers who wish to use these models in their studies. We consider both theoretical and practical issues related to their implementation, with a focus on specific examples from the field. © The Author(s) 2020. Published by Oxford University Press.Rings of single-stranded RNA are promising for many practical applications, but the methods to prepare them in preparative scale have never been established. Previously, RNA circularization was achieved by T4 RNA ligase 2 (Rnl2, a dsRNA ligase) using splints, but the yield was low due to concurrent intermolecular polymerization. Here, various functional RNAs (siRNA, miRNA, ribozyme, etc.) are dominantly converted by Rnl2 to the rings without significant limitations in sizes and sequences. The key is to design a precursor RNA, which is highly activated for the efficient circularization without any splint. First, secondary structure of target RNA ring is simulated by Mfold, and then hypothetically cut at one site so that a few intramolecular base pairs are formed at the terminal. Simply by treating this RNA with Rnl2, the target ring was selectively and efficiently produced. buy JW74 Unexpectedly, circular RNA can be obtained in high yield (>90%), even when only 2 bp form in the 3'-OH side and no full match base pair forms in the 5'-phosphate side.

Autoři článku: Glassbengtsson4683 (Sloan McConnell)