Boelfoged6405

Z Iurium Wiki

Verze z 22. 11. 2024, 14:48, kterou vytvořil Boelfoged6405 (diskuse | příspěvky) (Založena nová stránka s textem „The Wenzel model, commonly used for predicting the equilibrium contact angle (CA) of drops which penetrate the asperities of a rough surface, does not acco…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The Wenzel model, commonly used for predicting the equilibrium contact angle (CA) of drops which penetrate the asperities of a rough surface, does not account for the liquid volume stored in the asperities. Interestingly, many previous experimental and molecular dynamics studies have noted discrepancies between observed CAs and those predicted by the Wenzel model because of this neglected liquid volume. Here, we apply a thermodynamic model to wetting of periodically patterned surfaces to derive a volume-corrected Wenzel equation in the limit of small pattern wavelength (compared to drop size). We show that the corrected equilibrium CA is smaller than that predicted by the Wenzel equation and that the reduction in CA can be significant when the liquid volume within the asperities becomes non-negligible compared to the total droplet volume. In such cases, the corrected CAs agree reasonably well with experimental observations and results of molecular dynamics simulations reported in previous studies. Copyright © 2020 American Chemical Society.The Ca-based sorbent cyclic calcination/carbonation reaction (CCCR) is a high-efficiency technique for capturing CO2 from combustion processes. The CO2 capture ability of CaO modified with sodium humate (HA-Na) (HA-Na/CaO) in long-term calcination/carbonation cycles was investigated. The enhancement mechanism of HA-Na on CCCR was proposed and demonstrated. The effects of carbonation temperature, reaction duration, and the addition amount of HA-Na on the carbonation rate of the CaO adsorbent were also studied. HA-Na/CaO is allowed to react 20 min at the optimum conditions for calcination (920 °C, 100% N2) and for carbonation (700 °C, 15% CO2, 85% N2), respectively. HA-Na plays a key role in the CCCR process, and the carbonation conversion rate is lifted obviously. The maximum conversion rate of HA-Na/CaO is 23% higher than that of CaO in the first cycle. After 20 cycles, the conversion rate of HA-Na/CaO is still 0.28, while that of CaO is only 0.15. The carbonation conversion rate for HA-Na/CaO is improved by 86% compared to CaO. MEDICA16 In addition, the characteristics of calcined sorbents are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) methods. Copyright © 2020 American Chemical Society.Manuka honey is a premium food product with unique antimicrobial bioactivity. Concerns with mislabeled manuka honey require robust assays to determine authenticity. Lepteridine is a Leptospermum-specific fluorescent molecule with potential as an authenticity marker. We describe a mass spectrometry-based assay to measure lepteridine based on an isotopically labeled lepteridine standard. Using this assay, lepteridine concentrations in manuka honey samples strongly correlated with concentrations quantitated by either high-performance liquid chromatography-ultraviolet (HPLC-UV) or fluorescence. A derived minimum lepteridine threshold concentration was compared with the New Zealand regulatory definition for manuka honey to determine "manuka honey" authenticity on a set of commercial samples. Both methods effectively distinguished manuka honey from non-manuka honeys. The regulatory definition excludes lepteridine but otherwise includes the quantification of multiple floral markers together with pollen analysis. Our findings suggest that the quantification of lepteridine alone or in combination with leptosperin could be implemented as an effective screening method to identify manuka honey, likely to achieve an outcome similar to the regulatory definition. Copyright © 2020 American Chemical Society.In this paper, the high-temperature/high-pressure triaxial testing system of rocks is used to study the effect of spontaneous fluid imbibition on the formation mechanism of fracture networks, by means of acoustic emission (AE) monitoring and ultrasound measurement. After the water-shale interaction, the rock mechanical parameters such as rock strength, elastic modulus, cohesion, and internal friction angle of shales significantly decrease as the imbibition time increases, indicating that the fluid has a strong influence on the mechanical properties of brittle shales. The stress-strain curves of the wet and dry shales and their AE characteristics are quite different (i) the stress-strain curve of wet shale samples shows multiple fluctuations before macroscopic failure, and its cumulative AE number curve presents a step-like jump many times that corresponds to the local microcracking; (ii) the stress-strain curve of dry shale samples mainly shows the characteristic of linear elastic deformation during early loading, which has less AE event number, and the step-like jump is not observed in all the AE curves. The dry shale only has a large number of AE events until it is close to macroscopic failure. Nuclear magnetic resonance, mineral composition, and microstructure analysis show that Chengkou shale generally develops micro-nanoscale pores with a small pore throat, and thus strong capillary spontaneous absorption occurs. The shale-water interaction includes both chemical and physical effects, which affect the key parameters such as acoustic velocity, frictional force on the surfaces of artificial fracture, fracability, and other mechanical properties. This paper provides new insights to the investigation on the formation mechanism of artificial fracture networks in brittle shales. Copyright © 2020 American Chemical Society.The preparation of reusable and eco-friendly materials from renewable biomass resources such as cellulose is an inevitable choice for sustainable development. In this work, cellulose was dissolved in 7 wt % NaOH/12 wt % urea aqueous solution at -12 °C with rapid stirring. Cellulose microspheres (Cels) were fabricated by a sol-gel transition method. Subsequently, novel magnetic Ag-Fe3O4 nanoparticles (NPs) supported on cellulose microspheres were successfully constructed by an in situ one-pot synthesis. The magnetic cellulose microspheres (MCels) displayed a spherical shape with mesoporous structure and had a narrow particle size distribution (10-20 μm). Many nanopores with a pore diameter of 5-40 nm were observed in MCels. The Ag-Fe3O4 NPs were immobilized by anchoring with the hydroxyl groups on the surface of Cels. MCels were applied as a microreactor to evaluate their catalytic activities. 4-Nitrophenol (4-NP) could be reduced to 4-aminophenol (4-AP) in 5 min, catalyzed by MCels. Moreover, the magnetic microspheres exhibited a small hysteresis loop and low coercivity.

Autoři článku: Boelfoged6405 (Luna Adams)