Andersenmcpherson1117
It is difficult for the same molecule to form vesicular assemblies in water and alipatic hydrocarbon (oil), respectively. Here, we report that chiral oligo(methylene-p-phenyleneethynylene)s bearing hydrophobic or hydrophilic side chains can take extended conformations to self-assemble into vesicle-like particles in a hydrophobic or hydrophilic solvent system. The self-assembly processes are highly independent of molecular design and chemical environments. Based on the analyses of TEM, UV, CD and PXRD data, it is plausible to expect that the vesicular membranes could be stabilized together by π-π stacking interactions between foldamer backbones and collective van der Waals interactions between side chains.In recent decades, polymers of intrinsic microporosity (PIMs), especially the firstly introduced PIM-1, have been actively explored for various membrane-based separation purposes and widely recognized as the next generation membrane materials of choice for gas separation due to their ultra-permeable characteristics. Unfortunately, the polymers suffer substantially the negative impacts of physical aging, a phenomenon that is primarily noticeable in high free volume polymers. The phenomenon occurs at the molecular level, which leads to changes in the physical properties, and consequently the separation performance and membrane durability. This review discusses the strategies that have been employed to manage the physical aging issue, with a focus on the approach of blending with nanomaterials to give mixed matrix membranes. A detailed discussion is provided on the types of materials used, their inherent properties, the effects on gas separation performance, and their benefits in the suppression of the aging problem.Although synergistic therapy for diabetes mellitus has displayed significant promise for the effective treatment of diabetic nephropathy (DN), developing a simple and effective strategy to construct multifunctional nanoparticles is still a huge challenge. Moreover, the complicated pathological mechanism of DN involves various pathway dysfunctions that limit the effectiveness of a single therapeutic approach. Herein, hollow mesoporous silica nanocomposite (HMSN) particles doped with trace cerium oxide that exhibit renoprotective activity have been designed, which not only have the ability to prevent ROS-associated DN pathogenesis but also have high drug loading capacity. Interestingly, the metformin (MET) loaded multifunctional nanoparticles (MET-HMSN-CeO2) with a special size exhibited significantly increased kidney accumulation over free MET. see more Moreover, the cyclic conversion between Ce3+ and Ce4+ of mixed-valence ceria in our system provides the possibility for long-term ROS-scavenging activity to achieve the antioxidative effect. Then, we investigated the renoprotective effect of these nanoparticles on the streptozotocin (STZ)-induced renal injury rat model and high-glucose induced NRK-52E cell damage model. As a result, our findings demonstrated that the nanoparticles could alleviate the DN symptoms by mitigating oxidative stress, suppressing cellular apoptosis and protecting renal injury both in vitro and in vivo. The kidney deficits of DN are significantly improved after treatment with MET-HMSN-CeO2. Overall, our studies indicated that the MET-HMSN-CeO2 multifunctional nanoparticles would be a promising therapeutic candidate for DN.Recent experiments have reported the formation of very long C-C bonds (dC-C > 1.80 Å) and very short HH non-bonded contacts (dHH 1.829 Å and a planar amine reminiscent of a transition-state like structure for ammonia inversion. The small and narrow barrier favours rapid inversion through quantum mechanical tunnelling (QMT) and produces a translationally averaged planar amine as observed in the experiments. On the other hand, designing specific confined molecular cavities or chambers like in,in-bis(hydrosilane) or its germanane analogs furnishes an ultrashort HH distance = 1.47 Å and 1.38 Å respectively. The predisposition of such closely placed HH contacts arises from the rather effective attractive dispersion interactions between them. Controlling the strength of the dispersion interactions provides a rich landscape for realizing such close HH distances. Molecular design ably assisted by computational modeling to further tune these interactions provides new avenues to break the glass-ceilings of ultralong C-C bonds or ultrashort HH contacts. Dispersion-corrected DFT calculations and ab initio molecular dynamics simulations generate a large library of such unique features in a diverse class of molecules. This feature article highlights the design principles to realize hitherto longest C-C bonds/shortest HH contacts.Carbon dots (CDs) have excellent application prospects in various fields such as fluorescent dyes, but expanding their application, especially in bioimaging and the detection of organic pollutants, is still a major research objective. In this study, fluorescent CDs were successfully synthesized via the hydrothermal method using Serratia marcescens KMR-3. The platform based on CDs-KMR3 exhibited excellent stability, good biocompatibility, and low biotoxicity, and can be effectively applied to the imaging of bacteria, fungi, plant cells, protozoa and mammalian cells, and can specifically stain the membranes of all tested cells. In this study, for the first time, bacteria-derived CDs were used to image the representative species of organisms ranging from lower-order to higher-order organisms, thereby proving the feasibility of the application of CDs in the fluorescence imaging of Paramecium caudatum. Additionally, CDs-KMR3 can rapidly diffuse into all the parts of the leaf through diffusion into the veins and intercellular interstitium in response to the induction of transpiration. Moreover, the data illustrate that CDs-KMR3 are likely to enter the digestive tracts of microworms by ingestion through the oral cavity and pharynx, and spread to the pseudocoelom and somatic cells, and finally to be excreted from microworms through the anus. Furthermore, this platform can be utilized as fluorescent probes for the rapid and highly selective detection of p-nitrophenol (p-NP). Moreover, this study contributed to the increased application of bacteria-derived CDs in bioimaging and detection of p-NP.