Beardrafferty5590
These analyses of viral and host RNAs converge to implicate RPLP1/2 as functionally important for ribosomes to elongate through ORFs encoding multiple TMDs. We suggest that the effect of RPLP1/2 at TMD associated pauses is mediated by improving the efficiency of co-translational folding and subsequent protein stability.Maintenance of genome integrity is critical to guarantee transfer of an intact genome from parent to offspring during cell division. DNA polymerases (Pols) provide roles in both replication of the genome and the repair of a wide range of lesions. Amongst replicative DNA Pols, translesion DNA Pols play a particular role replication to bypass DNA damage. All cells express a range of translesion Pols, but little work has examined their function in parasites, including whether the enzymes might contribute to host-parasite interactions. Here, we describe a dual function of one putative translesion Pol in African trypanosomes, which we now name TbPolIE. Previously, we demonstrated that TbPolIE is associated with telomeric sequences and here we show that RNAi-mediated depletion of TbPolIE transcripts results in slowed growth, altered DNA content, changes in cell morphology, and increased sensitivity to DNA damaging agents. We also show that TbPolIE displays pronounced localization at the nuclear periphery, and that its depletion leads to chromosome segregation defects and increased levels of endogenous DNA damage. Finally, we demonstrate that TbPolIE depletion leads to deregulation of telomeric variant surface glycoprotein genes, linking the function of this putative translesion DNA polymerase to host immune evasion by antigenic variation.DNA breaks recruit and activate PARP1/2, which deposit poly-ADP-ribose (PAR) to recruit XRCC1-Ligase3 and other repair factors to promote DNA repair. Clinical PARP inhibitors (PARPi) extend the lifetime of damage-induced PARP1/2 foci, referred to as 'trapping'. To understand the molecular nature of 'trapping' in cells, we employed quantitative live-cell imaging and fluorescence recovery after photo-bleaching. Unexpectedly, we found that PARP1 exchanges rapidly at DNA damage sites even in the presence of clinical PARPi, suggesting the persistent foci are not caused by physical stalling. Loss of Xrcc1, a major downstream effector of PAR, also caused persistent PARP1 foci without affecting PARP1 exchange. Thus, we propose that the persistent PARP1 foci are formed by different PARP1 molecules that are continuously recruited to and exchanging at DNA lesions due to attenuated XRCC1-LIG3 recruitment and delayed DNA repair. Moreover, mutation analyses of the NAD+ interacting residues of PARP1 showed that PARP1 can be physically trapped at DNA damage sites, and identified H862 as a potential regulator for PARP1 exchange. PARP1-H862D, but not PARylation-deficient PARP1-E988K, formed stable PARP1 foci upon activation. Together, these findings uncovered the nature of persistent PARP1 foci and identified NAD+ interacting residues involved in the PARP1 exchange.
Attention, processing speed, executive functioning, and math difficulties are common in youth with sickle cell disease (SCD) with silent cerebral infarcts (SCI). This study investigated the cognitive underpinnings of math difficulties in children with SCD and SCI.
Youth (n=68) with SCD and SCI completed measures of attention [Digit Span forward (DSF); Conners Continuous Performance Test-Third Edition/Kiddie Conners Continuous Performance Test-Second Edition (CPT-3/KCPT-2)]; working memory [Wechsler Intelligence Scales (WPPSI-IV, WISC-IV, WISC-V, WAIS-IV), Working Memory Index (WMI), Digit Span backwards (DSB)]; processing speed [WPPSI-IV, WISC-IV, WISC-V, WAIS-IV Processing Speed Index (PSI)]; math reasoning [Wechsler Individual Achievement Test-Third Edition (WIAT-III) Mathematics composite (MC)]; and math fluency [WIAT-III Math Fluency composite (MF)] as part of a clinical neuropsychological evaluation. Parent ratings of attention and executive functioning were obtained [Behavior Assessment System for Children-Third Edition (BASC-3), Behavior Rating Inventory of Executive Function (BRIEF)].
MC was positively correlated with WMI (r=0.59, p=0.00), PSI (r=0.40, p<0.001), DSF (r=0.29, p=0.03), DSB (r=0.47, p<0.001), and MF (r=0.71, p<0.001). Correlations between MC, sustained attention, and parent ratings were nonsignificant. The linear regression model using correlated variables was significant [F(4,51)=8.29, R2=0.39, p<0.001]. WMI was the only significant variable within the model (p=0.02).
Working memory deficits account for significant variance in untimed mathematical performance in this population-consistent with other populations with white matter dysfunction. Interventions targeting both mathematics and working memory may be beneficial.
Working memory deficits account for significant variance in untimed mathematical performance in this population-consistent with other populations with white matter dysfunction. Interventions targeting both mathematics and working memory may be beneficial.Inducible promoters are a central regulatory component in synthetic biology, metabolic engineering, and protein production for laboratory and commercial uses. Many of these applications utilize two or more exogenous promoters, imposing a currently unquantifiable metabolic burden on the living system. Here, we engineered a collection of inducible promoters (regulated by LacI-based transcription factors) that maximize the free-state of endogenous RNA polymerase (RNAP). We leveraged this collection of inducible promotors to construct simple two-channel logical controls that enabled us to measure metabolic burden - as it relates to RNAP resource partitioning. selleck The two-channel genetic circuits utilized sets of signal-coupled transcription factors that regulate cognate inducible promoters in a coordinated logical fashion. With this fundamental genetic architecture, we evaluated the performance of each inducible promoter as discrete operations, and as coupled systems to evaluate and quantify the effects of resource partitioning. Obtaining the ability to systematically and accurately measure the apparent RNA-polymerase resource budget will enable researchers to design more robust genetic circuits, with significantly higher fidelity. Moreover, this study presents a workflow that can be used to better understand how living systems adapt RNAP resources, via the complementary pairing of constitutive and regulated promoters that vary in strength.