Pennwiese6450
Meiogyne kwangtungensis is a rare species endemic to Hainan, China, known just from two fruiting collections made in the 1930s. Although it was published under the name Meiogyne in 1976, it was suggested that it might be better placed within Pseuduvaria or Mitrephora. For decades, this species was never collected again, thus its true generic affinity remained unresolved due to the lack of flowers. During a field exploration in Hainan, we re-discovered this species and collected a flowering specimen for the first time. The flower immediately confirmed its affinity with Pseuduvaria. Phylogenetic analyses of five chloroplast regions (psbA-trnH, trnL-F, matK, rbcL, and atpB-rbcL; ca. 4.2 kb, 70 accessions) also unambiguously placed Meiogyne kwangtungensis in the Pseuduvaria clade (PP = 1.00, ML BS = 99%). Morphologically, it is most similar to P. multiovulata which is endemic to Myanmar and Thailand, both with often-paired flowers, long pedicels and short peduncles, and often 1-2 monocarps. However, it differs in having smaller flowers with kidney-shaped glands on the inner petals, fewer stamens and carpels, smaller ovoid monocarps with an apicule and fewer seeds. On the basis of the combined molecular phylogenetic and morphological data, we propose a new combination, Pseuduvaria kwangtungensis (P.T.Li) Qing L.Wang & B.Xue. A full description including floral characters and a color plate are provided here for this species. A key to species in the genus Pseuduvaria in China is also provided.As the underlying pathogen for the COVID-19 pandemic that has affected tens of millions of lives worldwide, SARS-CoV-2 and its mutations are among the most urgent research topics worldwide. Mutations in the virus genome can complicate attempts at accurate testing or developing a working treatment for the disease. Furthermore, because the virus uses its own proteins to replicate its genome, rather than host proteins, mutations in the replication proteins can have cascading effects on the mutation load of the virus genome. Due to the global, rapidly developing nature of the COVID-19 pandemic, local demographics of the virus can be difficult to accurately analyze and track, disproportionate to the importance of such information. find more Here, we analyzed available, high-quality genome data of SARS-CoV-2 isolates from Turkey and identified their mutations, in comparison to the reference genome, to understand how the local mutatome compares to the global genomes. Our results indicate that viral genomes in Turkey has one of the highest mutation loads and certain mutations are remarkably frequent compared to global genomes. We also made the data on Turkey isolates available on an online database to facilitate further research on SARS-CoV-2 mutations in Turkey.Influenza A viruses frequently change their genetic characteristics, which leads to the emergence of new viruses. Consequently, elucidation of the relationship between influenza A virus and host cells has a great importance to cope with viral infections. In this study, it was aimed to determine expression profiles of interferon response genes in human embryonic kidney 293 (HEK293) cells infected with human (A/WSN-H1N1) and avian influenza A viruses (duck/Pennsylvania/10218/84/H5N2) or transfected with plasmids encoding viral RdRP subunits and, to obtain clues about the genes that may be important for the viral pathogenesis. The HEK293 cells cultured in a 12-well plate were infected with influenza A viruses or transfected with plasmids encoding viral polymerase. Total RNA extraction and cDNA preparation were carried out with commercial kits. Qiagen 96-well-RT2 Profiler PCR Array plates designated for interferons response genes were used for quantitation of the transcripts. The relative quantities of transcripts were normalized with STAT3 gen, and the results were evaluated. Quantitative RT-PCR results showed that there are substantial differences of the interferon response gene transcription in cells infected with viruses or transfected with plasmids. A higher number of interferon-related genes were found to be downregulated in the cells infected with DkPen compared to WSN. On the other hand, significant differences in the expression profiles of interferon response genes were observed in the cells expressing viral PA protein. In particular, avian influenza PA protein was found to cause more aggressive changes on the transcript levels. Human and avian influenza A viruses cause a substantial change in interferon response gene expression in HEK293 cells. However, a higher number of genes were downregulated in the cells infected with avian influenza DkPen compared to WSN. It has been also concluded that the viral PA protein is one of the important viral factors affecting the transcript level of host genes.Viral pathogens seriously decrease the yield of potato (Solanum tuberosum L.) -an important agricultural crop. Therefore, there is a demand for potato cultivars resistant to multiple viruses. Ribonucleases (RNases) are supposed to be engaged to antiviral response in plants. Heterologous RNase gene expression provides a tool for production of cultivars with multiple resistance to viruses and viroids. Transgenic potato cultivars Luhivs'ka and Lasynak with heterologous genes bov and ZRNase II of apoplastic RNases from Bos taurus and Zinnia elegans respectively were obtained via Agrobacterium-mediated transformation. The presence of bov and ZRNase II transgenes was confirmed by PCR analysis. RNase activity was examined by modified Oleshko method. Plants with heterologous ribonuclease genes had higher level of RNase activity compared to nontransgenic ones. Transgenic plants inoculated with Potato virus Y, PVY (genus Potyvirus, family Potyviridae) demonstrated delayed and less severe symptoms of viral infection. DAS-ELISA confirmed the presence of viral antigens both in transformed and control plants. Visual manifestations of viral infection in transgenic potatoes were milder than in control plants and their development was delayed, but complete elimination of the virus did not occur.Durum wheat (Triticum turgidum L. var durum) is tetraploid wheat (AABB); it is the main source of semolina and other pasta products. Grain yield in wheat is quantitatively inherited and influenced by the environment. The genetic map construction constitutes the essential step in identifying quantitative trait loci (QTLs) linked to complex traits, such as grain yield. The study aimed to construct a genetic linkage map of two parents that are widely grown durum cultivars (Lahn and Cham1) in the Mediterranean basin, which is characterized by varying climate changes. The genetic linkage map of Lahn/Cham1 population consisted of 112 recombinant inbred lines (RILs) and was used to determine QTLs linked to the grain yield in 11 contrasting environments (favorable, cold, dry, and hot). Simple sequence repeat (SSR) molecular markers were used to construct an anchor map, which was later enriched with single nucleotide polymorphisms (SNPs). The map was constructed with 247 SSRs and enriched with 1425 SNPs. The map covered 6122.