Andersonsavage1766
Failed jump landings represent a key mechanism of musculoskeletal trauma. It has been speculated that cognitive dual-task loading during the flight phase may moderate the injury risk. This study aimed to explore whether increased visual distraction can compromise landing biomechanics. Twenty-one healthy, physically active participants (15 females, 25.8 ± 0.4 years) completed a series of 30 counter-movement jumps (CMJ) onto a capacitive pressure platform. In addition to safely landing on one leg, they were required to memorize either one, two or three jersey numbers shown during the flight phase (randomly selected and equally balanced over all jumps). Outcomes included the number of recall errors as well as landing errors and three variables of landing kinetics (time to stabilization/TTS, peak ground reaction force/pGRF, length of the centre of pressure trace/COPT). Differences between the conditions were calculated using the Friedman test and the post hoc Bonferroni-Holm corrected Wilcoxon test. Regardless of the condition, landing errors remained unchanged (p = .46). In contrast, increased visual distraction resulted in a higher number of recall errors (chi2 = 13.3, p = .001). Higher cognitive loading, furthermore, appeared to negatively impact mediolateral COPT (p less then .05). Time to stabilization (p = .84) and pGRF (p = .78) were unaffected. A simple visual distraction in a controlled experimental setting is sufficient to adversely affect landing stability and task-related short-term memory during CMJ. The ability to precisely perceive the environment during movement under time constraints may, hence, represent a new injury risk factor and should be investigated in a prospective trial.The effects of resistance training (RT) associated with calcium β-hydroxyβ-methylbutyrate (CaHMB) supplementation on the body composition and gene expression of cytokines related to skeletal muscle hypertrophy and adipose tissue metabolism were studied in rats. Male Wistar rats were divided into four groups of 12 animals sedentary control (SC); sedentary supplemented (SS); resistance training control (RTC) and resistance training supplemented (RTS). Rats from RTC and RTS groups were submitted to an RT programme and those from SS and RTS groups received 1 mL of CaHMB (320 mg kg-1 day-1) by gavage, for 8 weeks. We evaluated body composition; plasma lipid profile; the gene expression of interleukin (IL)-6, IL-10, IL-15 and fibronectin type III domain-containing protein 5 (FNDC-5) in skeletal muscle, and IL-6, mitochondrial uncoupling protein 1 (UCP-1) in white adipose tissue (WAT); and the concentration of irisin in WAT. Compared to RTC alone, the combination of CaHMB with RT (RTS) further reduced abdominal circumference (5.3%), Lee index (2.4%), fat percentage (24.4%), plasma VLDL cholesterol (16.8%) and triglycerides (17%) and increased the gene expression of FNDC-5 (78.9%) and IL-6 (47.4%) in skeletal muscle and irisin concentration (26.9%) in WAT. Neither RT nor CaHMB affected the protein percentage or the gene expression of IL-6 and UCP-1 in WAT and IL-10, IL-15 in skeletal muscle. In conclusion, CaHMB supplementation increased the beneficial effects of RT on body fat reduction and was associated with muscular genic expression of IL-6 and FNDC-5 and irisin concentration in WAT, despite the lack of change in protein mass and maximal strength.Phenolic compounds have antioxidant and anti-inflammatory properties and may prevent inflammation and oxidative stress as well as help the athletes to recover from exercise-induced muscle damage (EIMD). Tart cherry (TC) and pomegranate (PG) are two fruits with high content of polyphenols. Their antioxidant and anti-inflammatory properties have recently attracted substantial interest for their potential to reduce strength loss and promote recovery from EIMD. find more The aims of this review are (1) to summarise the effects of tart cherry and pomegranate supplementation on oxidative stress, inflammation and recovery, and (2) to outline the differences found in supplementation with tart cherries or pomegranates. SPORTDiscus, PubMed, Web of Science and Scopus were searched according to Preferred Reporting Items for Systematic Reviews and Meta-Analysis and 25 studies were included. The existing evidence suggests that both types of supplementation are good strategies to accelerate recovery of functional performance variables, perceptual variables and inflammation but PG supplementation shows better recovery of oxidative stress. However, positive effects are more likely 1) when supplementation starts some days before muscle damage is induced and finishes some days after, for a total period of at least 8/10 days, 2) with pronounced muscle damage of the muscles involved, and 3) when total phenolic content is at least 1000 mg/day. This review may help to optimise TC or PG supplementation practice to improve post-exercise recovery.Hot water immersion is used by athletes in weight category sports to produce rapid weight loss (RWL) by means of passive fluid loss, and often is performed with the addition of Epsom salts (magnesium sulphate). This study investigated the magnitude of body mass losses during hot water immersion with or without the addition of salt, with the temperature commencing at 37.8°C and being self-adjusted by participants to their maximum tolerable temperature. In a crossover design, eight male MMA athletes (29.4 ± 5.3 y; 1.83 ± 0.05 m; 85.0 ± 4.9 kg) performed a 20 min whole-body immersion followed by a 40 min wrap in a warm room, twice in sequence per visit. During one visit, only fresh water was used (FWB), and in the other visit, magnesium sulphate (1.6% wt/vol) was added to the bath (SWB). Prior to each visit, 24 h of carbohydrate, fibre and fluid restriction was undertaken. Water temperatures at the end of the first and second baths were ~39.0°C and ~39.5°C, respectively. Body mass losses induced by the hot bath protocols were 1.71 ± 0.70 kg and 1.66 ± 0.78 kg for FWB and SWB, respectively (P = 0.867 between trials, d = 0.07), and equivalent to ~2.0% body mass. Body mass lost during the entire RWL protocol was 4.5 ± 0.7%. Under the conditions employed, the magnitude of body mass lost in SWB was similar to FWB. Augmenting passive fluid loss during hot water immersion with the addition of salt may require a higher salt concentration than that presently utilised.