Rowemattingly4801
Host protective immunity against pathogenic Mycobacterium tuberculosis (Mtb) infection is variable and poorly understood. Both prior Mtb infection and BCG vaccination have been reported to confer some protection against subsequent infection and/or disease. However, the immune correlates of host protection with or without BCG vaccination remain poorly understood. Similarly, the host response to concomitant infection with mixed Mtb strains is unclear. In this study, we used the rabbit model to examine the host response to various infectious doses of virulent Mtb HN878 with and without prior BCG vaccination, as well as simultaneous infection with a mixture of two Mtb clinical isolates HN878 and CDC1551. We demonstrate that both the ability of host immunity to control pulmonary Mtb infection and the protective efficacy of BCG vaccination against the progression of Mtb infection to disease is dependent on the infectious inoculum. The host response to infection with mixed Mtb strains mirrors the differential responses seen during infection with each of the strains alone. The protective response mounted against a hyperimmunogenic Mtb strain has a limited impact on the control of disease caused by a hypervirulent strain. This preclinical study will aid in predicting the success of any vaccination strategy and in optimizing TB vaccines. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Childhood chronic immune thrombocytopenic purpura (cITP) is a rare disease. In severe cases, there is no evidence for the optimal therapeutic strategy. Our aim was to describe the real-life management of non-selected children with cITP at diagnosis. Since 2004, patients less than 18 years old with cITP have been enrolled in the national prospective cohort, OBS'CEREVANCE. From 1990 to 2014, in 29 centres, 392 children were diagnosed with cITP. With a median follow-up of six years (2·0-25), 45% did not need second-line therapy, and 55% (n = 217) received one or more second lines, mainly splenectomy (n = 108), hydroxychloroquine (n = 61), rituximab (n = 61) or azathioprine (n = 40). The overall five-year further second-line treatment-free survival was 56% [95% CI 49·5-64.1]. The use of splenectomy significantly decreased over time. Hydroxychloroquine was administered to children with positive antinuclear antibodies, more frequently older and girls, and reached 55% efficacy. None of the patients died. Ten years after the initial diagnosis, 55% of the 56 followed children had achieved complete remission. Children with cITP do not need second-line treatments in 45% of cases. Basing the treatment decision on the pathophysiological pathways is challenging, as illustrated by ITP patients with positive antinuclear antibodies treated with hydroxychloroquine. © 2020 British Society for Haematology and John Wiley & Sons Ltd.Polycomb group (PcG) RING finger protein 5 (PCGF5) is a core component of the so-called Polycomb repressive complex 1.5 (PRC1.5), which is involved in epigenetic transcriptional repression. click here To explore the developmental function of Pcgf5, we generated Pcgf5 knockout (Pcgf5-/- ) mouse embryonic stem cell (mESC) lines with the help of CRISPR/Cas9 technology. We subjected the Pcgf5-/- and wild-type (WT) mESCs to a differentiation protocol toward mesodermal-cardiac cell types as aggregated embryoid bodies (EBs) and we found that knockout of Pcgf5 delayed the generation of the three germ layers, especially the ectoderm. Further, disruption of Pcgf5 impacted the epithelial-mesenchymal transition during EB morphogenesis and differentially affected the gene expression of essential developmental signaling pathways such as Nodal and Wnt. Finally, we also unveiled that loss of Pcgf5 induced the repression of genes involved in the Notch pathway, which may explain the enhancement of cardiomyocyte maturation and the dampening of ectodermal-neural differentiation observed in the Pcgf5-/- EBs. This article is protected by copyright. All rights reserved.The ascidian belongs to the sister group of vertebrates and shares many features with them. The gene regulatory network (GRN) controlling gene expression in ascidian embryonic development leading to the tadpole larva has revealed evolutionarily conserved gene circuits between ascidians and vertebrates. These conserved mechanisms are indeed useful to infer the original developmental programs of the ancestral chordates. Simultaneously, these studies have revealed which gene circuits are missing in the ascidian GRN; these gene circuits may have been acquired in the vertebrate lineage. In particular, the GRN responsible for gene expression in ectodermal cells of ascidian embryos has revealed the genetic programs that regulate the regionalization of the brain, formation of palps derived from placode-like cells, and differentiation of sensory neurons derived from neural crest-like cells. We here discuss how these studies have given insights into the evolution of these traits. © 2020 Japanese Society of Developmental Biologists.The efficiency of von Willebrand factor (VWF) in thrombus formation is related to its multimeric size, which is controlled by the protease ADAMTS13. However, it is not clear what regulates ADAMTS13 activity. In this study, we investigated whether PF4 could bind to VWF and inhibit ADAMTS13 activity. We found that PF4 binds to VWF and protects against ADAMTS13 activity. We also found that VWF-PF4 complexes circulate in patients with thrombotic thrombocytopenic purpura (TTP). Our data provides the first evidence that PF4 may have a novel role in regulating VWF multimers during primary haemostasis and thrombosis. © 2020 British Society for Haematology and John Wiley & Sons Ltd.Patients with chronic kidney disease (CKD) have a greatly enhanced risk of cardiovascular morbidity and mortality. Over the past decade it has come clear that a disturbed calcium-phosphate metabolism, with Fibroblast Growth Factor-23 as a key hormone, is partly accountable for this enhanced risk. Numerous studies have been performed unravelling FGF23s actions and its association with clinical conditions. As FGF23 is strongly associated with adverse outcome it may be a promising biomarker for risk prediction or, even more important, targeting FGF23 may be a strategy to improve patient outcome. This review elaborates on the clinical usefulness of FGF23 measurement. Firstly it discusses the reliability of the FGF23 measurement. Secondly, it evaluates whether FGF23 measurement may lead to improved patient risk classification. Finally, and possibly most importantly, this review evaluates if lowering of FGF23 should be a target for therapy. For this, the review discusses the current evidence indicating that FGF23 may be in the causal pathway to cardiovascular pathology, provides an overview of strategies to lower FGF23 levels and discusses the current evidence concerning the benefit of lowering FGF23.