Staffordbek5882

Z Iurium Wiki

Verze z 21. 11. 2024, 23:32, kterou vytvořil Staffordbek5882 (diskuse | příspěvky) (Založena nová stránka s textem „To this end, an artificial intelligence system that can automatically analyze an object in a vehicle video uploaded by a seller, and an artificial intellig…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

To this end, an artificial intelligence system that can automatically analyze an object in a vehicle video uploaded by a seller, and an artificial intelligence system that can filter the vehicle-specific terms and profanity from the seller's video presentation, were also developed. As a result of evaluating the developed system, the average execution speed of the proposed YOLOv3+MSSIM Type 2 algorithm was 78.6 ms faster than that of the pure YOLOv3 algorithm, and the average frame rate per second was improved by 40.22 fps. In addition, the average GPU utilization rate was improved by 23.05%, proving the efficiency.In recent years, the investigation and exploitation of hydrothermal region and polymetallic mineral areas has become a hot topic. The emergence of underwater vehicle platforms has made it possible for new chemical sensors to be applied in marine in-situ detection. Laser-induced breakdown spectroscopy (LIBS), with its advantages of rapid real-time analysis, sampling without pretreatment, simultaneous multi-element detection and stand-off detection, has great potential in marine applications. In this paper, a newly more compact and lighter underwater LIBS system based on the LIBSea system named LIBSea II was developed and tested both in the laboratory and sea trials. The system consists of a NdYAG single-pulse laser at 1064 nm, a fiber spectrometer, optical layout, a power supply module and an internal environment sensor. The system is encapsulated in a pressure vessel (Φ 190 mm × L 588 mm) with an optical window on the end cap. Experimental parameters of the system including laser energy and delay time were firstly optimized in the laboratory. Then, field test of the system in nearshore was performed with various samples, including pure metal and alloy samples as well as a manganese nodule sample from deep sea, to verify the detection performance of the LIBSea II system. In 2019, the system was deployed on a remotely operated vehicle (ROV) of Haima for deep sea trial, and atomic lines of K, Na, Ca and strong molecular bands of CaOH from a carbonate rock sample were obtained for the first time at depths of 1400 m. These results show that the LIBSea II system has great potential to be used in deep-sea geological exploration.Autism spectrum disorder (ASD) is conceived as a neurodevelopmental disorder. The scientific literature welcomes studies that reflect the possible singularities that people with ASD may present both in their daily lives and at an educational level. The main objective of this study is to analyze the scientific production on the term autism in Web of Science, focused on the educational field, in order to identify the research trends in this field of study. The intention is to offer researchers who study autism in the educational field some clear research directions. A bibliometric-type methodology was developed using the scientific mapping technique. For this purpose, a performance analysis and a co-word analysis were carried out. Work was conducted with an analysis unit of 5512 documents. The results show that the volume of production has been irregular from the beginning to the present. The collection of documents on the subject began to be relevant, in terms of the volume of production, from 2007, and this has persisted to the present. It is concluded that there are two lines of research. The first is the line focused on mothers of children with ASD and the second is the line of research focused on young people with ASD. In addition, since 2012, new lines of research have been generated, focused on the diagnosis and inclusion of these students in educational centers.The ability to adhere to the intestinal mucus layer is an important property of probiotic bacteria. Lactobacillus reuteri strains ZJ615 and ZJ617 show low and high adhesion, respectively, to intestinal epithelial cells. In this study, we quantified bacterial cell wall-associated glyceraldehyde-3-phosphate dehydrogenases (cw-GAPDH) and bacterial cell membrane permeability in both strains using immunoblotting and flow cytometry, respectively. Highly adhesive L. reuteri ZJ617 possessed significantly more cw-GAPDH, higher cell membrane permeability, and significantly higher adhesive ability toward mucin compared with low-adhesive L. reuteri ZJ615. In vitro adhesion studies and analysis of interaction kinetics using the Octet, the system revealed significantly decreased interaction between L. reuteri and mucin when mucin was oxidized when bacterial surface proteins were removed when bacteria were heat-inactivated at 80 °C for 30 min, and when the interaction was blocked with an anti-GAPDH antibody. SWISS-MODEL analysis suggested intensive interactions between mucin glycans (GalNAcα1-O-Ser, GalNAcαSer, and Galβ3GalNAc) and GAPDH. Furthermore, in vivo studies revealed significantly higher numbers of bacteria adhering to the jejunum, ileum, and colon of piglets orally inoculated with L. Stenoparib in vivo reuteri ZJ617 compared with those inoculated with L. reuteri ZJ615; this led to a significantly decreased rate of diarrhea in piglets inoculated with L. reuteri ZJ617. In conclusion, there are strong correlations among the abundance of cw-GAPDH in L. reuteri, the ability of the bacterium to adhere to the host, and the health benefits of this probiotic.Two-dimensional (2D) materials, such as molybdenum disulfide (MoS2) of the transition metal dichalcogenides family, are widely investigated because of their outstanding electrical and optical properties. However, not much of the 2D materials research completed to date has covered large-area structures comprised of high-quality heterojunction diodes. We fabricated a large-area n-MoS2/p-Si heterojunction structure by sulfurization of MoOx film, which is thermally evaporated on p-type silicon substrate. The n-MoS2/p-Si structure possessed excellent diode characteristics such as ideality factor of 1.53 and rectification ratio in excess of 104. Photoresponsivity and detectivity of the diode showed up to 475 mA/W and 6.5 × 1011 Jones, respectively, in wavelength ranges from visible to near-infrared. The device appeared also the maximum external quantum efficiency of 72%. The rise and decay times of optical transient response were measured about 19.78 ms and 0.99 ms, respectively. These results suggest that the sulfurization process for large-area 2D heterojunction with MoS2 can be applicable to next-generation electronic and optoelectronic devices.

Autoři článku: Staffordbek5882 (Qvist Guldbrandsen)