Doganbennett3985
Lanthanum-incorporated β-Ni(OH)2 nanosheets display superior catalytic behavior and stability for urea electro-oxidation, which originates from the optimized electronic structure, the downshift of the d-band center and the increased number of exposed active sites.Bio-artificial kidneys require conveniently synthesized membranes providing signals that regulate renal epithelial cell function. Therefore, we aimed to find synthetic analogues for natural extracellular matrix (ECM) protein coatings traditionally used for epithelial cell culturing. Two biomaterial libraries, based on natural ECM-coatings and on synthetic supramolecular small molecule additives, were developed. The base material consisted of a bisurea (BU) containing polymer, providing supramolecular BU-additives to be incorporated via specific hydrogen bonding interactions. This system allows for a modular approach and therefore easy fractional factorial based screening. A natural coating on the BU-polymer material with basement membrane proteins, laminin and collagen IV, combined with catechols was shown to induce renal epithelial monolayer formation. Modification of the BU-polymer material with synthetic BU-modified ECM peptide additives did not result in monolayer formation. Unexpectedly, simple BU-catechol additives induced monolayer formation and presented similar levels of epithelial markers and apical transporter function as on the laminin, collagen IV and catechol natural coating. Importantly, when this BU-polymer material was processed into fibrous e-spun membranes the natural coating and the BU-catechol additive were shown to perfectly function. This study clearly indicates that complex natural ECM-coatings can be replaced by simple synthetic additives, and displays the potency of material libraries based on design of experiments in combination with modular, supramolecular chemistry.Iron porphyrin and carbon black (CB) were utilized to fabricate an iron-nitrogen doped carbon (Fe-N-C) catalyst to create a new heterogeneous catalytic system with CdS to drive CO2 reduction to CO under UV/vis light (AM 1.5G) irradiation. The system delivers a high CO production yield of 111 mmol gcat-1 and a large turnover number (TON) of 1.22 × 103 in 8 h with a selectivity of 85%, all of which are competitive with state-of-the-art systems. The mechanism of the system was investigated by experimental and theoretical methods indicating that the high affinity between the iron active center and the *COOH intermediate facilitates the brilliant catalytic performance. This work provides a new direction for constructing heterogeneous CO2 photoreduction systems.The separation of volatile molecules into metal-oxide frameworks (MOxF) is possible with the combination of two approaches spatial confinement and sorption-desorption equilibria. We have shown that nanoporous MOxF, namely giant POMs with Keplerate or toroidal structures, have a specific sorption behaviour towards different volatile substances that can be generalized through the dependence of the limit sorption on the dielectric constant and molecular polarizability. Assisted by the Hildebrand and Hansen solubility parameters and the Snyder polarity index, an analysis of sorption behaviour shows that the contributions of hydrogen bonding, hydrophobic forces and polar and dispersion interactions can be expressed through a cooperative phenomenon (the formation of a quasi-liquid layer) correlated with dielectric constant as a major parameter. The obtained data can be used to predict the separation of volatile substances using MOxF-embedded hybrid materials, such as selective membranes.Solids undergo displacement damage (DD) when interacting with energetic particles, which may happen during the fabrication of semiconductor devices, in harsh environments and in certain analysis techniques. Simulations of DD generation are usually carried out using classical molecular dynamics (MD), but classical MD does not account for all the effects in DD, as demonstrated by ab initio calculations of model systems in the literature. A complete ab initio simulation of DD generation is impractical due to the large number of atoms involved. In my previous paper [Yang, Phys. Chem. Chem. Phys., 2020, 22, 19307], I developed an adaptive-center (AC) method for the adaptive-partitioning (AP) of quantum mechanics/molecular mechanics (QM/MM) simulations, allowing the active region centers and the QM/MM partition to be determined on-the-fly for energy-conserving AP-QM/MM methods. I demonstrated that the AC-AP-QM/MM is applicable to the simulation of DD generation, so that the active regions can be treated using an ab initio method. The AC method could not be used to identify the fast-moving recoil ions in DD generation as active region centers, however, and the accuracy is negatively affected by the rapid change in the QM/MM partition of the system. In this paper, I extend the AC method and develop a speed-dependent adaptive-center (SDAC) method for accurate AP-QM/MM simulations of DD. see more The SDAC method is applicable to general problems with speed-dependent active regions, and is compatible with all existing energy-conserving partitioning-by-distance AP-QM/MM methods. The artifact due to the speed-dependent potential energy surface can be made small by choosing suitable criteria. I demonstrate the SDAC method by simulations of DD generation in bulk silicon.Single-adherent-cell phenotyping on an extracellular matrix (ECM) is essential to determine cellular biological functions, such as morphological adaptations and biomolecule secretions, correlated to medical treatments and metastasis, yet there is no available platform for such high-throughput screening. Here, a novel hydrogel drop-screen device was developed to rapidly measure large-scale single-cell morphologies and multiple secretions on substrates for phenotype profiling. Single cells were first anchored to microfluidically fabricated gelatin particles providing mechanical stimulations similar to those from ECM in vivo. The cellular morphologies were then examined by quantifying the amount of cytoskeleton expressed on the particles. With droplet encapsulation, adherent single-cell multiplexed secretion analysis of a disintegrin and metalloproteinases (ADAMs) and matrix metalloproteinases (MMPs) was conducted at a throughput of ∼102 cells per second, revealing distinct functional heterogeneities associated with extracellular mechanical stimulations.