Paynevestergaard9889
The ongoing SARS-CoV-2 pandemic is a global public health emergency posing a high burden on nations' health care systems and economies. Despite the great effort put in the development of vaccines and specific treatments, no prophylaxis or effective therapeutics are currently available. Nitric oxide (NO) is a broad-spectrum antimicrobial and a potent vasodilator that has proved to be effective in reducing SARS-CoV replication and hypoxia in patients with severe acute respiratory syndrome. Given the potential of NO as treatment for SARS-CoV-2 infection, we have evaluated the in vitro antiviral effect of NO on SARS-CoV-2 replication. The NO-donor S-nitroso-N-acetylpenicillamine (SNAP) had a dose dependent inhibitory effect on SARS-CoV-2 replication, while the non S-nitrosated NAP was not active, as expected. Although the viral replication was not completely abolished (at 200 μM and 400 μM), SNAP delayed or completely prevented the development of viral cytopathic effect in treated cells, and the observed protective effect correlated with the level of inhibition of the viral replication. The capacity of the NO released from SNAP to covalently bind and inhibit SARS-CoV-2 3CL recombinant protease in vitro was also tested. The observed reduction in SARS-CoV-2 protease activity was consistent with S-nitrosation of the enzyme active site cysteine.The potassium channel Kv1.3, involved in several important pathologies, is the target of a family of psoralen-based drugs whose mechanism of action is not fully understood. Here we provide evidence for a physical interaction of the mitochondria-located Kv1.3 (mtKv1.3) and Complex I of the respiratory chain and show that this proximity underlies the death-inducing ability of psoralenic Kv1.3 inhibitors. The effects of PAP-1-MHEG (PAP-1, a Kv1.3 inhibitor, with six monomeric ethylene glycol units attached to the phenyl ring of PAP-1), a more soluble novel derivative of PAP-1 and of its various portions on mitochondrial physiology indicate that the psoralenic moiety of PAP-1 bound to mtKv1.3 facilitates the diversion of electrons from Complex I to molecular oxygen. The resulting massive production of toxic Reactive Oxygen Species leads to death of cancer cells expressing Kv1.3. In vivo, PAP-1-MHEG significantly decreased melanoma volume. In summary, PAP-1-MHEG offers insights into the mechanisms of cytotoxicity of this family of compounds and may represent a valuable clinical tool.Generation of mitochondrial reactive oxygen species (ROS) is an important process in triggering cellular necrosis and tissue infarction during ischemia-reperfusion (IR) injury. Ischemia results in accumulation of the metabolite succinate. Rapid oxidation of this succinate by mitochondrial complex II (Cx-II) during reperfusion reduces the co-enzyme Q (Co-Q) pool, thereby driving electrons backward into complex-I (Cx-I), a process known as reverse electron transport (RET), which is thought to be a major source of ROS. During ischemia, enhanced glycolysis results in an acidic cellular pH at the onset of reperfusion. While the process of RsET within Cx-I is known to be enhanced by a high mitochondrial trans-membrane ΔpH, the impact of pH itself on the integrated process of Cx-II to Cx-I RET has not been fully studied. Using isolated mouse heart and liver mitochondria under conditions which mimic the onset of reperfusion (i.e., high [ADP]), we show that mitochondrial respiration (state 2 and state 3) as well as isolated Cx-II activity are impaired at acidic pH, whereas the overall generation of ROS by Cx-II to Cx-I RET was insensitive to pH. Together these data indicate that the acceleration of Cx-I RET ROS by ΔpH appears to be cancelled out by the impact of pH on the source of electrons, i.e. Cx-II. Implications for the role of Cx-II to Cx-I RET derived ROS in IR injury are discussed.This paper investigates the use of benchtop NMR spectrometers for quantitative analysis with external standards. Specifically, it focuses on the measurement of aqueous samples with analyte concentrations ranging from 30 mM to 1.7 M and electrical conductivity of up to 84mScm-1 using a 43 MHz instrument. It is demonstrated that measurements using the PULCON method cannot achieve an average error in quantification of less then 4% with the benchtop NMR tested here unless the standard and analyte are very similar. selleck inhibitor Our analysis indicates that this comparatively large error arises from the fixed tuning and matching of the benchtop spectrometer. We confirm that for moderately dilute samples (less than 0.2 M), the integral area of the solvent peak is suitable for use as an internal standard to mitigate this error. Furthermore, a round robin study demonstrates that the second major source of uncertainty in these measurements arises from the manual processing of the spectra by different analysts. Here we propose heuristics for manual baseline and phase correction to reduce this analyst-dependent error to about 3 %. We also demonstrate that semi-automated quantification using qGSD is able to achieve similar accuracy of integration, but with reduced sensitivity to the processing of the operator.
Primary immune deficiencies (PIDs) are a heterogeneous group of disorders resulting from defects in immune system. They lead to increased susceptibility to infections and immune dysregulation. The resulting chronic inflammation can induce long-term complications, including AA amyloidosis (AAA).
To present the French cases of PID-related AAA and perform a systematic literature review to determine its main features and predisposing factors.
A systematic literature review was performed by searching MEDLINE up until 2019. New French cases were identified with the help of the Reference Center for Auto-Inflammatory Diseases and AA Amyloidosis and the Reference Center for Hereditary Immune Deficiencies.
Forty patients were identified including 2 new French cases. PIDs were varied immunoglobulin deficits (n= 30), chronic granulomatous disease (n= 3), hyper-IgM syndrome (n= 3), hereditary complete C4 deficiency (n= 1), leucocyte adhesion deficiency type 1 (n= 1), hyper-IgE syndrome (n= 1), and Chediak-Higashi syndrome (n= 1).