Corneliussensejersen1771
In RWL, a codebook is first constructed by clustering MBLBDs on each local patch to extract a feature histogram. Then, considering that different parts of the face have different degrees of robustness to local changes, a set of weights is learned to concatenate the feature histograms of all local patches into the final representation of a face image. In addition, to further improve the performance for heterogeneous face recognition, a coupled WFH (C-WFH) method is proposed. C-WFH maintains the similarity of the corresponding MBLBDs and feature histograms for a pair of heterogeneous face images by means of a novel coupled feature learning (CFL) method to reduce the modality gap. A series of experiments are conducted on widely used face datasets to analyze the performance of WFH and C-WFH. Extensive experimental results show that WFH and C-WFH outperform state-of-the-art face recognition methods.We propose to learn a cascade of globally-optimized modular boosted ferns (GoMBF) to solve multi-modal facial motion regression for real-time 3D facial tracking from a monocular RGB camera. GoMBF is a deep composition of multiple regression models with each is a boosted ferns initially trained to predict partial motion parameters of the same modality, and then concatenated together via a global optimization step to form a singular strong boosted ferns that can effectively handle the whole regression target. It can explicitly cope with the modality variety in output variables, while manifesting increased fitting power and a faster learning speed comparing against the conventional boosted ferns. By further cascading a sequence of GoMBFs (GoMBF-Cascade) to regress facial motion parameters, we achieve competitive tracking performance on a variety of in-the-wild videos comparing to the state-of-the-art methods which either have higher computational complexity or require much more training data. It provides a robust and highly elegant solution to real-time 3D facial tracking using a small set of training data and hence makes it more practical in real-world applications. We further deeply investigate the effect of synthesized facial images on training non-deep learning methods such as GoMBF-Cascade for 3D facial tracking. We apply three types synthetic images with various naturalness levels for training two different tracking methods, and compare the performance of the tracking models trained on real data, on synthetic data and on a mixture of data. The experimental results indicate that, i) the model trained purely on synthetic facial imageries can hardly generalize well to unconstrained real-world data, ii) involving synthetic faces into training benefits tracking in some certain scenarios but degrades the tracking model's generalization ability. These two insights could benefit a range of non-deep learning facial image analysis tasks where the labelled real data is difficult to acquire.Fitting ellipses from unrecognized data is a fundamental problem in computer vision and pattern recognition. Classic least-squares based methods are sensitive to outliers. To address this problem, in this paper, we present a novel and effective method called hierarchical Gaussian mixture models (HGMM) for ellipse fitting in noisy, outliers-contained, and occluded settings on the basis of Gaussian mixture models (GMM). This method is crafted into two layers to significantly improve its fitting accuracy and robustness for data containing outliers/noise and has been proven to effectively narrow down the iterative interval of the kernel bandwidth, thereby speeding up ellipse fitting. Extensive experiments are conducted on synthetic data including substantial outliers (up to 60%) and strong noise (up to 200%) as well as on real images including complex benchmark images with heavy occlusion and images from versatile applications. We compare our results with those of representative state-of-the-art methods and demonstrate that our proposed method has several salient advantages, such as its high robustness against outliers and noise, high fitting accuracy, and improved performance.We present a novel method to jointly learn a 3D face parametric model and 3D face reconstruction from diverse sources. https://www.selleckchem.com/products/Tie2-kinase-inhibitor.html Previous methods usually learn 3D face modeling from one kind of source, such as scanned data or in-the-wild images. Although 3D scanned data contain accurate geometric information of face shapes, the capture system is expensive and such datasets usually contain a small number of subjects. On the other hand, in-the-wild face images are easily obtained and there are a large number of facial images. However, facial images do not contain explicit geometric information. In this paper, we propose a method to learn a unified face model from diverse sources. Besides scanned face data and face images, we also utilize a large number of RGB-D images captured with an iPhone X to bridge the gap between the two sources. Experimental results demonstrate that with training data from more sources, we can learn a more powerful face model.The existing image compression methods usually choose or optimize low-level representation manually. Actually, these methods struggle for the texture restoration at low bit rates. Recently, deep neural network (DNN)-based image compression methods have achieved impressive results. To achieve better perceptual quality, generative models are widely used, especially generative adversarial networks (GAN). However, training GAN is intractable, especially for high-resolution images, with the challenges of unconvincing reconstructions and unstable training. To overcome these problems, we propose a novel DNN-based image compression framework in this paper. The key point is decomposing an image into multi-scale sub-images using the proposed Laplacian pyramid based multi-scale networks. For each pyramid scale, we train a specific DNN to exploit the compressive representation. Meanwhile, each scale is optimized with different aspects, including pixel, semantics, distribution and entropy, for a good "rate-distortion-perception" trade-off. By independently optimizing each pyramid scale, we make each stage manageable and make each sub-image plausible. Experimental results demonstrate that our method achieves state-of-the-art performance, with advantages over existing methods in providing improved visual quality. Additionally, a better performance in the down-stream visual analysis tasks which are conducted on the reconstructed images, validates the excellent semantics-preserving ability of the proposed method.