Lysgaardkofoed1601

Z Iurium Wiki

Verze z 21. 11. 2024, 23:09, kterou vytvořil Lysgaardkofoed1601 (diskuse | příspěvky) (Založena nová stránka s textem „The number of senescent cells in the skin is increasing with age. Numerous studies have attempted to elucidate the role of these cells in normal aging of t…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The number of senescent cells in the skin is increasing with age. Numerous studies have attempted to elucidate the role of these cells in normal aging of the skin as well as in age-related skin conditions. In recent years, attempts have also been made to find treatments that aim either to cleanse the skin tissues of senescent cells or to neutralize their effects (referred to as senolytics and senomorphics respectively) and thus prevent the consequences, particularly on the skin's appearance in advanced age. Through this review, we have tried to gather data on the role of senescent cells in the skin, in treatments aimed at removing them, and we are asking a reasonable question as to whether anti-senescence treatments may contribute to the protection against age-related skin pathologies, including skin cancer, such as non-melanoma skin cancer, in addition to their involvement in skin rejuvenation.Prenylation is a process widely prevalent in primary and secondary metabolism, contributing to functionality and chemical diversity in natural systems. Due to their high regio- and chemoselectivities, prenyltransferases are also valuable tools for creation of new compounds by chemoenzymatic synthesis and synthetic biology. Over the last ten years, biochemical and structural investigations shed light on the mechanism and key residues that control the catalytic process, but to date crucial information on how certain prenyltransferases control regioselectivity and chemoselectivity is still lacking. Here, we advance a general understanding of the enzyme family by contributing the first structure of a tryptophan C5-prenyltransferase 5-DMATS. Additinally, the structure of a bacterial tryptophan C6-prenyltransferase 6-DMATS was solved. Analysis and comparison of both substrate-bound complexes led to the identification of key residues for catalysis. Next, site-directed mutagenesis was successfully implemented to not only modify the prenyl donor specificity but also to redirect the prenylation, thereby switching the regioselectivity of 6-DMATS to that of 5-DMATS. The general strategy of structure-guided protein engineering should be applicable to other related prenyltransferases, thus enabling the production of novel prenylated compounds.Targeting pathogenic immune cell trafficking poses an attractive opportunity to attenuate autoimmune disorders such as multiple sclerosis (MS). MS and its animal model, experimental autoimmune encephalomyelitis (EAE), are characterized by the immune cells-mediated demyelination and neurodegeneration of the central nervous system (CNS). https://www.selleckchem.com/ Our previous study has proven that dietary naringenin ameliorates EAE clinical symptoms via reducing the CNS cell infiltration. The present study examined the beneficial effects of naringenin on maintaining the blood-brain barrier in EAE mice via dietary naringenin intervention. The results showed that naringenin-treated EAE mice had an intact blood-CNS barrier by increasing tight junction-associated factors and decreasing Evans Blue dye in the CNS. Naringenin decreased the accumulation and maturation of conventional dendritic cells (cDCs), CCL19, and CCR7 in the CNS. Also, naringenin blocked the chemotaxis and antigen-presenting function of cDCs that resulted in reducing T-cell secreting cytokines (IFN-γ, IL-17, and IL-6) in the spleen. Importantly, naringenin blocked pathogenic T cells infiltrated into the CNS and attenuates passive EAE. Therefore, by blocking chemokine-mediated migration of DCs and pathogenic T cells into the CNS, naringenin attenuates EAE pathogenesis and might be a potential candidate for the treatment of autoimmune diseases, such as MS and other chronic T-cell mediated autoimmune diseases.Acute lung injury has been reported to be associated with heat stress in various animals. Ursolic acid is a natural pentacyclic triterpenoid compound with multiple bioactivities. However, it remains unknown whether ursolic acid supplementation alleviates heat stress-induced lung injury. In the present study, male Institute of Cancer Research mice were left untreated under a normal temperature condition (23±1°C), receiving orally administrated with vehicle (phosphate buffered saline) or ursolic acid (40 mg/kg BW-1·d-1 for 2 d), and then were subjected to high temperature (41±1°C) for 2 h. Histological alterations, activities of antioxidative enzymes, apoptosis, generation of reactive oxygen species, abundance of inflammatory cytokines, and endoplasmic reticulum stress-related proteins were analyzed. Compared with the controls, heat stress treatment led to enhanced apoptosis, increased H2O2 production, and upregulated protein levels of inflammatory cytokines in the serum, including tumor necrosis factor alpha, interleukin-6, and interleukin-1 beta. Activities of malondialdehyde, lactate dehydrogenase, and myeloperoxidase were increased, while the activities for superoxide dismutase and catalase were reduced in lung tissues of mice. All these alterations were significantly prevented by ursolic acid administration. Further study showed that heat stress led to activation of protein kinase-like ER kinase eukaryotic initiation factor 2 alpha -the transcription factor CCAAT-enhancer-binding protein homologous protein (CHOP) signaling, which was attenuated by ursolic acid supplementation. These findings indicated that ursolic acid pretreatment protected lung tissues against heat stress-induced injury by regulating inflammatory cytokines and unfolded protein response in mice. Ursolic acid supplementation might be a therapeutic strategy to alleviate high temperature-induced lung injury in humans and animals.Curcumin, a hydrophobic polyphenol of turmeric, has a variety of biological functions as an herbal supplement, but its poor gastric absorption rate is one of the major factors limiting its oral bioavailability. In the present study, we investigated the functional role of nanospheres loaded with curcumin (nCur) with regard to the motility of gut epithelial HCT116 cells and enterocyte migration along the crypt-villus axis. nCur significantly increased the motility of HCT116 cells and showed much higher migration efficacy than the curcumin. nCur stimulated the small GTPases Rac1 and the phosphorylation of protein kinase C, responsible for the distinctive activation of the mitogen-activated protein kinases. Interestingly, nCur significantly induced the expression of α-actinin, profilin-1, and filamentous (F)-actin as regulated by the phosphorylation of nuclear factor-kappa B during its promotion of cell migration. In mouse models of gut epithelial migration, treatment with nCur had an enhancing effect on the movement of enterocytes along the crypt-villus axis and the expression of cytoskeletal reorganization-related factors.

Autoři článku: Lysgaardkofoed1601 (Pratt Arildsen)