Christiansiegel5363
brevis, 4) severe hypoxia with no K. brevis (0.69 mg L-1 ± S.D. 0.36 dissolved oxygen), 5) severe hypoxia (0.63 mg L-1 ± S.D. 0.40 dissolved oxygen) with a high concentration of K. brevis, and 6) a normoxic control (7.3 mg L-1 ± S.D. 0.61 dissolved oxygen) with no K. brevis. Survival and stone crab lethargy or responsiveness was monitored every 10-12 h for six days. Crabs simultaneously exposed to K. brevis and severe hypoxia exhibited a 43% decrease in survival and experienced increased lethargy within 24 h relative to the control (7% decrease in survival, no increase in lethargy). The increase in stress level and sluggish behavior during exposure to hypoxia was evident by a general lack of responsiveness or movement which indicates that nearshore populations of stone crabs are unlikely to emigrate away from such conditions suggesting that future harvests may be reduced following prolonged K. brevis blooms and hypoxic events.Mixotrophic Dinophysis species threaten human health and coastal economies through the production of toxins which cause diarrhetic shellfish poisoning (DSP) in humans. Novel blooms of Dinophysis acuminata and Dinophysis ovum have occurred in North American waters in recent decades, resulting in the closure of shellfish harvesting. Understanding the ecology of Dinophysis species and their prey is essential to predicting and mitigating the impact of blooms of these dinoflagellates. The growth response of two new isolates of Dinophysis species, one isolate of Mesodinium rubrum, and two strains of Teleaulax amphioxeia were evaluated at a range of temperature, salinity, and irradiance treatments to identify possible environmental drivers of Dinophysis blooms in the Gulf of Mexico. Results showed optimal growth of T. amphioxeia and M. rubrum at 24 °C, salinity 30 - 34, and irradiances between 300 and 400 µmol quanta m - 2s - 1. Optimal Dinophysis growth was observed at salinity 22 and temperatures between 18 and 24 °C. Mesodinium and both Dinophysis responded differently to experimental treatments, which may be due to the suitability of prey and different handling of kleptochloroplasts. Dinophysis bloom onset may be initiated by warming surface waters between winter and spring in the Gulf of Mexico. Toxin profiles for these two North American isolates were distinct; Dinophysis acuminata produced okadaic acid, dinophysistoxin-1, and pectenotoxin-2 while D. ovum produced only okadaic acid. Toxin per cell for D. ovum was two orders of magnitude greater than D. acuminata. Phylogenies based on the cox1 and cob genes did not distinguish these two Dinophysis species within the D. acuminata complex.Microcystins (MCs) are among the predominant cyanotoxins that are primarily degraded by heterotrophic bacteria in various freshwater environments, including Lake Erie, a Laurentian Great Lake. However, despite the prevalence of MCs in Lake Erie basins, our knowledge about the taxonomic diversity of local MC-degrading bacteria is largely limited. The current study obtained thirty-four MC-degrading bacterial pure isolates from Lake Erie surface water and characterized their taxonomical and phenotypic identities as well as their MC-degradation rates under different pH, temperature, availability of organic substrates and with other MC-degrading isolates. Obtained MC-degrading isolates included both Gram-positive (18 isolates of Actinobacteria and Firmicutes) and Gram-negative bacteria (16 isolates of Gamma-proteobacteria); and 7 of these isolates were motile, and 13 had the capacity to form biofilms. In general, MC-degradation rates of the isolates were impacted by temperature and pH but insensitive to the presen treatment systems.Cylindrospermopsin (CYN) is a toxic secondary metabolite produced by several freshwater species of cyanobacteria. Its high chemical stability and wide biological activity pose a series of threats for human and animal morbidity and mortality. The biggest risk of CYN exposure for human organism comes from the consumption of contaminated water, fish or seafood. Very important for effective monitoring of the occurrence of CYN in aquatic environment is accurate identification of cyanobacteria species, that are potentially able to synthesize CYN. In this review we collect data about the discovery of CYN production in cyanobacteria and present the morphological changes between all its producers. Additionally we set together the results describing the catalytic decomposition of CYN.Large-scale floating green tides in the Southern Yellow Sea (SYS) caused by the macroalgal species Ulva prolifera have been recurring for 13 years and have become one of the greatest marine ecological disasters in the world. In this study, we attempt to explore the development pattern of green tides and find its key environmental influencing factors. The satellite remote sensing data of the development process of green tides fit the logistic growth curve (R2 = 0.93, P less then 0.01) well, showing three distinct growth phases (lag, exponential growth, and short plateau phases). Correspondingly, the green tide-drifting area from the coast of Jiangsu to the nearshore waters of the Shandong Peninsula was divided into three sections the lag phase zone (A), the exponential growth phase zone (B), and the plateau phase zone (C). Zone A in the south of Jiangsu coastal waters had abundant inorganic nutrients that were indispensable to the green tide initiation. Zone B was mainly located out of Haizhou Bay, south of 34.5° N and north of 35.5° N, where approximately 80% of the green tide biomass was generated. The rich bioavailable nutrient sources, suitable temperature, and irradiance in this area were the main promotion factors for the rapid growth and scale expansion of green tides. PHTPP cost Wet precipitation in zone B in May and June also played an important role in the final scale of green tides. Zone C had poor nutrients, increasing temperature, and irradiance (high transparency), which limited the continued expansion of green tides, and organic nutrients might be an important support to green tides development in this region. The study based on the growth phases of green tides could help us further understand the eutrophication mechanism in the green tide outbreaks in SYS.