Ortizlau3954

Z Iurium Wiki

Verze z 21. 11. 2024, 22:51, kterou vytvořil Ortizlau3954 (diskuse | příspěvky) (Založena nová stránka s textem „Combretum zeyheri and Combretum platypetalum have been shown to have anticancer, antibacterial, antituberculosis, and antifungal effects in both in vivo an…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Combretum zeyheri and Combretum platypetalum have been shown to have anticancer, antibacterial, antituberculosis, and antifungal effects in both in vivo and in vitro studies. This study sought to evaluate the antiproliferative effects of compounds isolated from C. zeyheri and C. platypetalum on Jurkat T and HL-60 cancer cell lines in combination with doxorubicin and/or chlorambucil. At their GI50 concentrations, the isolated compounds were combined with the corresponding GI50 of chlorambucil and doxorubicin. The cytotoxic effects of the combined compounds were determined on BALB/c mouse peritoneal cells. All the 4 isolated compounds had significant cytotoxic effects on Jurkat T cells. Compounds CP 404 (1), CP 409 (2), CZ 453 (3), and CZ 455 (4) had GI50s on Jurkat T cells of 3.98, 19.33, 6.82, and 20.28 μg/ml, respectively. CP 404 (1), CP 409 (2), CZ 453 (3), and CZ 455 (4) showed GI50s of 14.18, 28.69, 29.87, and 16.46 μg/ml on HL-60 cancer cell lines, respectively. The most potent combination against Jurkat T cells was found to be CP 404 (1) and chlorambucil. This combination showed no cytotoxic effects when tested on BALB/c mouse peritoneal cells. It was concluded that the compounds extracted from C. zeyheri and C. platypetalum inhibit the growth of Jurkat T cells in vitro. The combination of the compounds with anticancer drugs enhanced their anticancer effects. The combination of CP 404 (1) and chlorambucil was found not to be toxic to normal mammalian cells. Therefore, CP 404 (1), 3-O-β-L-rrhamnopyranosyl-5,7,3'4',5'-pentahydroxyflavone, has the potential to be a source of lead compounds that can be developed for anticancer therapy. Further structure-activity relationship studies on this compound are warranted.Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is an accurate and convenient method for mRNA quantification. Selection of optimal reference gene(s) is an important step in RT-qPCR experiments. However, the stability of housekeeping genes in spinach (Spinacia oleracea) under various abiotic stresses is unclear. Evaluating the stability of candidate genes and determining the optimal gene(s) for normalization of gene expression in spinach are necessary to investigate the gene expression patterns during development and stress response. In this study, ten housekeeping genes, 18S ribosomal RNA (18S rRNA), actin, ADP ribosylation factor (ARF), cytochrome c oxidase subunit 5C (COX), cyclophilin (CYP), elongation factor 1-alpha (EF1α), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), histone H3 (H3), 50S ribosomal protein L2 (RPL2), and tubulin alpha chain (TUBα) from spinach, were selected as candidates in roots, stems, leaves, flowers, and seedlings in response to high temperature, CdCl2, NaCl, NaHCO3, and Na2CO3 stresses. The expression of these genes was quantified by RT-qPCR and evaluated by NormFinder, BestKeeper, and geNorm. 18S rRNA, actin, ARF, COX, CYP, EF1α, GAPDH, H3, and RPL2 were detected as optimal reference genes for gene expression analysis of different organs and stress responses. The results were further confirmed by the expression pattern normalized with different reference genes of two heat-responsive genes. Here, we optimized the detection method of the gene expression pattern in spinach. Our results provide the optimal candidate reference genes which were crucial for RT-qPCR analysis.

Bloodstream infections (BSI) among patients with hematological malignancies (HM) could predispose them to higher morbidity and mortality for various underlying conditions. https://www.selleckchem.com/products/d-1553.html Several microorganisms, either pathogenic or opportunistic normal human flora, could cause severe bacteremia and septicemia. While conventional methods have their own limitations, molecular methods such as next-generation sequencing (NGS) can detect these blood infections with more reliability, specificity, and sensitivity, in addition to information on microbial population landscape.

. Blood samples from HM patients (

= 50) and volunteer blood donor control individuals with no HM (

= 50) were subjected to 16S rRNA gene amplification using standard PCR protocols. A metagenomic library was prepared, and NGS was run on a MiSeq (Illumina) sequencer. Sequence reads were analyzed using MiSeq Reporter, and microbial taxa were aligned using the Green Genes library.

82% of the patients showed BSI with Gram-negative bacteria as the most predominant group.

comprised a major chunk of the bacterial population (19.51%), followed by

(17.07%). The CoNS and

groups are 17.07% and 14.63%, respectively. Other major species were

(9.75%),

(7.31%),

(4.87%),

(4.87%), and

(4.87%). 34.14% of the cases among patients showed a Gram-positive infection, while 14.63% showed polymicrobial infections.

Most of the BSI in patients were characterized by polymicrobial infections, unlike the control samples. Molecular methods like NGS showed robust, fast, and specific identification of infectious agents in BSI in HM, indicating the possibility of its application in routine follow-up of such patients for infections.

Most of the BSI in patients were characterized by polymicrobial infections, unlike the control samples. Molecular methods like NGS showed robust, fast, and specific identification of infectious agents in BSI in HM, indicating the possibility of its application in routine follow-up of such patients for infections.Small heat shock proteins (sHSPs) are a group of chaperone proteins existed in all organisms. The functions of sHSPs in heat and abiotic stress responses in many glycophyte plants have been studied. However, their possible roles in halophyte plants are still largely known. In this work, a putative sHSP gene KvHSP26 was cloned from K. virginica. Bioinformatics analyses revealed that KvHSP26 encoded a chloroplastic protein with the typical features of sHSPs. Amino acid sequence alignment and phylogenetic analysis demonstrated that KvHSP26 shared 30%-77% homology with other sHSPs from Arabidopsis, cotton, durian, salvia, and soybean. Quantitative real-time PCR (qPCR) assays exhibited that KvHSP26 was constitutively expressed in different tissues such as leaves, stems, and roots, with a relatively higher expression in leaves. Furthermore, expression of KvHSP26 was strongly induced by salt, heat, osmotic stress, and ABA in K. virginica. All these results suggest that KvHSP26 encodes a new sHSP, which is involved in multiple abiotic stress responses in K.

Autoři článku: Ortizlau3954 (Lausten Arsenault)