Fraziermcmillan9699
Such engineered heterostructures might allow the coupling of superconductivity to the topologically nontrivial surface states featured by transition-metal carbide phases composing these heterostructures potentially leading to unconventional superconductivity. Moreover, we envisage that our approach could also be generalized to other metal carbide and nitride systems that could exhibit high-temperature superconductivity.We study popular attitudes in Germany, Spain, the Philippines, and the United States toward three controversial markets-prostitution, surrogacy, and global kidney exchange (GKE). Of those markets, only prostitution is banned in the United States and the Philippines, and only prostitution is allowed in Germany and Spain. Unlike prostitution, majorities support legalization of surrogacy and GKE in all four countries. So, there is not a simple relation between public support for markets, or bans, and their legal and regulatory status. Because both markets and bans on markets require social support to work well, this sheds light on the prospects for effective regulation of controversial markets.Mutation of HELLS (Helicase, Lymphoid-Specific)/Lsh in human DNA causes a severe immunodeficiency syndrome, but the nature of the defect remains unknown. We assessed here the role of Lsh in hematopoiesis using conditional Lsh knockout mice with expression of Mx1 or Vav Cre-recombinase. selleck compound Bone marrow transplantation studies revealed that Lsh depletion in hematopoietic stem cells severely reduced B cell numbers and impaired B cell development in a hematopoietic cell-autonomous manner. Lsh-deficient mice without bone marrow transplantation exhibited lower Ig levels in vivo compared to controls despite normal peripheral B cell numbers. Purified B lymphocytes proliferated normally but produced less immunoglobulins in response to in vitro stimulation, indicating a reduced capacity to undergo class switch recombination (CSR). Analysis of germline transcripts, examination of double-stranded breaks using biotin-labeling DNA break assay, and End-seq analysis indicated that the initiation of the recombination process was unscathed. In contrast, digestion-circularization PCR analysis and high-throughput sequencing analyses of CSR junctions and a chromosomal break repair assay indicated an impaired ability of the canonical end-joining pathway in Lsh-deficient B cells. Our data suggest a hematopoietic cell-intrinsic role of Lsh in B cell development and in CSR providing a potential target for immunodeficiency therapy.Oxidative damage to DNA is a threat to the genomic integrity and coding accuracy of the chromosomes of all living organisms. Guanine is particularly susceptible to oxidation, and 8-oxo-dG (OG), when produced in situ or incorporated by DNA polymerases, is highly mutagenic due to mispairing with adenine. In many bacteria, defense against OG depends on MutT enzymes, which sanitize OG in the nucleotide pool, and the MutM/Y system, which counteracts OG in chromosomal DNA. In Escherichia coli, antibiotic lethality has been linked to oxidative stress and the downstream consequences of OG processing. However, in mycobacteria, the role of these systems in genomic integrity and antibiotic lethality is not understood, in part because mycobacteria encode four MutT enzymes and two MutMs, suggesting substantial redundancy. Here, we definitively probe the role of OG handling systems in mycobacteria. We find that, although MutT4 is the only MutT enzyme required for resistance to oxidative stress, this effect is not due to OG processing. We find that the dominant system that defends against OG-mediated mutagenesis is MutY/MutM1, and this system is dedicated to in situ chromosomal oxidation rather than correcting OG incorporated by accessory polymerases (DinB1/DinB2/DinB3/DnaE2). In addition, we uncover that mycobacteria resist antibiotic lethality through nucleotide sanitization by MutTs, and in the absence of this system, accessory DNA polymerases and MutY/M contribute to antibiotic-induced lethality. These results reveal a complex, multitiered system of OG handling in mycobacteria with roles in oxidative stress resistance, mutagenesis, and antibiotic lethality.Lung cancer causes more deaths annually than any other malignancy. A subset of non-small cell lung cancer (NSCLC) is driven by amplification and overexpression or activating mutation of the receptor tyrosine kinase (RTK) ERBB2 In some contexts, notably breast cancer, alternative splicing of ERBB2 causes skipping of exon 16, leading to the expression of an oncogenic ERBB2 isoform (ERBB2ΔEx16) that forms constitutively active homodimers. However, the broader implications of ERBB2 alternative splicing in human cancers have not been explored. Here, we have used genomic and transcriptomic analysis to identify elevated ERBB2ΔEx16 expression in a subset of NSCLC cases, as well as splicing site mutations facilitating exon 16 skipping and deletions of exon 16 in a subset of these lung tumors and in a number of other carcinomas. Supporting the potential of ERBB2ΔEx16 as a lung cancer driver, its expression transformed immortalized lung epithelial cells while a transgenic model featuring inducible ERBB2ΔEx16 specifically in the lung epithelium rapidly developed lung adenocarcinomas following transgene induction. Collectively, these observations indicate that ERBB2ΔEx16 is a lung cancer oncogene with potential clinical importance for a proportion of patients.Following the April 16, 2020 release of the Opening Up America Again guidelines for relaxing coronavirus disease 2019 (COVID-19) social distancing policies, local leaders are concerned about future pandemic waves and lack robust strategies for tracking and suppressing transmission. Here, we present a strategy for triggering short-term shelter-in-place orders when hospital admissions surpass a threshold. We use stochastic optimization to derive triggers that ensure hospital surges will not exceed local capacity and lockdowns are as short as possible. For example, Austin, Texas-the fastest-growing large city in the United States-has adopted a COVID-19 response strategy based on this method. Assuming that the relaxation of social distancing increases the risk of infection sixfold, the optimal strategy will trigger a total of 135 d (90% prediction interval 126 d to 141 d) of sheltering, allow schools to open in the fall, and result in an expected 2,929 deaths (90% prediction interval 2,837 to 3,026) by September 2021, which is 29% of the annual mortality rate.